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ABSTRACT states of a set of context—dependent phonetic units. For each frame,
Syst based . " t th t state—of—th the posterior probability of the DNN states is used as the occupation
yStems based on (—vectors represent the current state-0—the-gil, ity for computing the usual statistics that allow training the

': ;eeﬁ_ér;(:;egae;dnin;rzzgzlt(aetgorr?cg‘ggIgggé(l:?] tgéz vazrnkt V\:seir;?lt;(r)?gctheBM Gaussian parameters, and successively to extract the i—vectors.
speaker factors of Joint Factor Analysis (JFA) and to i-vectors, that I-vector modeling stems from the Joint Factor AnaIyS|s_ (‘]'.:A)
we call “e—vector”. The e—vectors derive their name from the eigen?pproaCh [12, .13' 14]. JFA models the speaker_and chanm_el ""’?‘”ab
voice space of the JFA speaker modeling approach. Our working h vy of a _Gaus_5|an s#perwlactor by means of a linear combination r?f .
pothesis is that JFA estimates a more informative speaker subsp %:genvowe, eigenchannel and MAP gdapt{?\ted supervectors. Each o
than the “total variability” i—vector subspace, because the latter i em can be represented by a I_ow—d_lmensmnal set of factors _that can
obtained by considering each training segment as belonging to a di e estimated accordlng to the iterative p_rocedure |Ilustrat_ed in [12].
ferent speaker. We propose, thus, a simple “i—vector style” modelin has, however, expenmentally ShOW” h [15.] that _the elgenchgn—
and training technique that exploits this observation, and estimates | fac_tors keep some.correlat!on with the eigenvoice fact.ors, €.,
more accurate subspace with respect to the one provided by the c1d88Y sl convey some |nfo_rmat|on {?‘bOUt the '_speaker identity. This
sical i-vector approach, as confirmed by the results of a set of tes servation motivated the introduction of the i-vector appfoa.c.h asa
performed on the extended core NIST 2012 Speaker Recognitio ature extractor (16, 1}, where ;peaker and channel variability are
Evaluation dataset. Simply replacing the i—vectors with e—vectorgnOdeled in a_smgle Iovv_—d|men3|onal space spanned by the column
we get approximately 10% average improvement of the&, cost vectors of a smglg matri. ) oo
function, using different systems and classifiers. These perfarenan Although the i—vector subspace also includes channel variabil-

gains come without any additional memory or computational costdly: which is detrimental for speaker recognition, i-vectors have
with respect to the standard i—vector systems. shown to provide a large performance boost over JFA-based meth-

- . ) ) ods. The main advantage of the i—vector representation is that the
Index Terms— Speaker Recognition, eigenvoice, Joint Factorproplem of intersession variability is deferred to a second stage,

Analysis, i-vectors, e-vectors. dealing with low—dimensional vectors rather than with the high—
dimensional supervector space of the GMM supervectors. This
1. INTRODUCTION allows training, in a low dimensional subspace, better classifiers,

such as PLDA and Pairwise Support Vector Machine (PSVM) [3, 4].
Systems based on i—vectors [1], and on Probabilistic Linear DisFurthermore, in such low dimensional space it is possible to perform
criminant Analysis (PLDA) [2] or discriminative classifiers [3, 4] transformations that are particularly suited for enhancing the classi-
represent the current state—of-the—art in text-independent spealtier performance, such as compensating development and evaluation
recognition. A speech segment is represented in this approach I$gt mismatches by means of length normalization [17, 18], or trans-
a low—dimensional “identity vector” or i—vector, obtained from the forming i—vectors so that they better fit the classifier assumptions
statistics of a Gaussian Mixture Model (GMM) supervector [5] by a[19]. Finally, PLDA and PSVM models allow exploiting multiple
Maximum a Posteriori point estimate of a posterior distribution [6].recordings of the same speaker by simply averaging their corre-
The i~vector model constrains the GMM superveaiprepresent-  sponding i—vectors. This simple approach has shown to be more
ing both the speaker and channel characteristics of a given speegffective than properly estimation of multi-session likelihood ratios

segment, to live in a single subspace according to: in PLDA.
In this work we propose a speaker modeling approach that esti-
s=u+Tw, (1) mates a more accurate speaker subspace with respect to the one pro-

vided by standard i-vector models. It extracts a compact representa-
tion of a speech segment, similar to i—vectors, but richer in speaker
information, as confirmed by the results of a set of experiments per-
formed on the extended core NIST SRE-2012 tests [20]. By anal-
ogy, we will refer to this representation as “eigenvoice-vector”, or
“e—vector” for short.

whereu is the UBM supervectofT is a low-rank rectangular matrix
with C' x F rows andM columns, and” and F' are the number
of GMM components and feature dimensions, respectively. Mhe
columns ofT are vectors spanning the “total variability” space, and
w is a random vector of siz&/ having a standard normal prior dis-
tribution.

In a recently proposed approach [7, 8, 9, 10, 11], the standard Our main idea is to extract more accurate i—vectors, relying on
acoustic Universal Background Model (UBM) is replaced by a fine_N€ €igenvoice space, which should be more accurate than the one
grained “phonetic” UBM obtained by associating a single GaussiafiePresented by matril’ , The novelty of our approach consists in

to each output unit of a DNN, trained to discriminate among theSStimating an i-vector subspace matrix so that it spans the same
directions of the JFA speaker subspace. In particular, we estimate a

Computational resources for this work were provided by tis peerfor-  linear transformation that allows keeping the span of the speaker—
mance computing clusters of HPC@POLITO (http://www.hpdtpal) specific subspace, but at the same time allows learning a prior suited
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for i—vector extraction rather than for speaker—factor extraction. 3. E-VECTORS
This is simply obtained by considering each training segment as
belonging to a different speaker, as it is done in standard i—vectdt is worth noting that, due to the substantial similarity of the models
training, and re—training the i—vector subspace, starting from th€2), and (1), matrixT training can be performed similarly to eigen-
JFA speaker matrix, by means of Minimum Divergence EstimatiorvoiceV matrix training. The only difference is that Vimatrix esti-
(MDE) iterations only. This corresponds to a right-multiplication mation, the segments of a given speaker are considered as belonging
of the JFA eigenvoice matrix with the Cholesky decompositionto a single class, whereas Thmatrix estimation, all segments are
of P = L 3" E[w;w]], where the sum extends over all thé  considered as belonging to different classes. Since matspans
training i~vectors, so that the empirical distribution of the e-vectordoth the speaker and channel subspace, and it is estimated consider-
conforms to the standard normal prior [14, 2, 21]. Thus, we keep thing each training segment as belonging to a different speaker, matrix
span of the eigenvoice space, but we estimate a better model pridrdoes not model the speaker subspace as well as the eigenvoice
with the aim of better estimating the e—vector posterior. matrix V.

The paper is organized as follows: Section 2 recalls the eigen- ©On the basis of this observation, we propose a speaker modeling
voice, JFA, and i—vector approaches. Section 3 introduces the @pproach that tries to take advantage of the best of the JFA and of

vectors and their training procedure. The experimental results atg@ i-vector techniques. We keep the i-vectors framework to exploit
Jhe low—dimensionality of a voice segment representation, but we

presented and commented in Section 4, and conclusions are drawt¥ ‘ ! !

in Section 5. estimate a different matrix, which better accounts for the speaker
space. This new matrig, is similar to theT matrix, but it is esti-
mated with the additional constraint that it spans the same subspace
represented by the eigenvoice matrix trained on the same dataset.

2. SUPERVECTOR REPRESENTATIONS The steps for training thE matrix are as follows:

e FirstaV matrix is trained exactly as matrixis, but assuming

A model-based speaker adaptation approach was proposed in [22],
which constrains the adapted model to be a linear combination of
a small number of basis vectors obtained from a set of reference
speakers. In this approach, these “eigenvoice” vectors are estimated
with the objective of capturing the most important components
of variation among the reference speakers. The adaptation data
are used for obtaining, by means of Maximum Likelihood Eigen-
Decomposition, the weights of the linear combination, leading to

that the segments of a given speaker belong to a single class,
i.e., accumulating the sufficient statistics per speaker, rather
than per speaker segment. It is worth noting that we perform
this procedure as the eigenvoice estimation of [22, 24]. Al-
ternatively, it is possible to train thé matrix together with
matricesU andD in the JFA framework.

In the second step, matri is initialized by V. Then, the

E matrix is trained considering each training segment as be-
longing to a different speaker, as it is done for the estimation
of the T matrix, but applying only Minimum Divergence Es-
timation (MDE) iterations. MDE modifies thE matrix so
that the empirical e—vector posterior conforms to the standard
normal prior, increasing the data likelihood but leaving un-
changed the span of matrix.

a low—dimensional vector representation of a new speaker in the
eigenvoice space. Eigenvoice modeling, thus, aims at character-
izing the speaker within the speaker subspace, and thanks to the
correlations between GMM components, allows adapting also rarely
observed Gaussians. This modeling approach was then also pro-
posed for speaker recognition in [23], and in [24], where eigenvoice

MAP adaptation was introduced.

In [25] the eigenvoice approach has been applied effectively td he resulting e-vector model is, thus, similar to the i—vector model:
the problem of modeling intra—speaker variability, by compensating
the session (channel) variability at recognition time. Finally JFA

modeling was introduced in [12], where the eigenvoice model wag ;1 matrix E better spans the speaker variability subspace. This
extended to deal with intersession speaker variability, and chann@le s that e-vectors are more informative than i-vectors having the
mismatches between enroliment and evaluation conditions, taking,me dimensions. because some directions spanned Byntladrix

care of the channel effects also in speaker enrollment. This was olainly represent channel effects. The latter are reduced in nitrix
tained by defining two subspaces: the speaker space represented by gjnce the segments of a given speaker are considered as a sin-
an eigenvoice matri¥/, and the channel space represented by an e jass in matriav training, the number of different speakers in
eigenchannel matri. In particular, JFA models the speaker and the training corpora must be large enough to accurately model the
channel dependent supervectdor a given speech segmentas:  gheayer subspace. The effects of the dimension of the speaker popu
lation is analyzed in the next section, devoted to the experiments.

s=u+Ew, (©)]

s=u+ Vy+Ux+ Dz, 2)

whereu is the UBM supervectoly andU are rectangular low rank
matrices,D is a diagonal matrix, angl, x and z are the speaker,

channel, and residual (or common) factors, respectively. We compared the performance of i-vectors and e—vectors systems on
However, since the JFA channel factors do also contain inforthe core extended NIST SRE 2012 tests [20]. For these experiments
mation about the speaker identity [15], the i-vector approach hase used the 45-dimensional feature vectors obtained by stacking 18
been introduced in [16, 1], where the speaker and channel deptendecepstral (g-cis), 19 delta (Aco-Acig) and 8 double—delta’{Aco-
supervector model for a given speech segment was simplified as ré&«Ac;) parameters. We trained gender-independent i-vector and e—
called in (1). Although the JFA speaker subspace better capturegctor extractors, based on a 1024—component diagonal cowarianc
relevant speaker information, in the last years it has been shown thatBM, estimated with data from NIST SRE 2004-2010, and addi-
directly using this subspace in the JFA framework does not providéionally with the Switchboard Il, Phases 2 and 3, and Switchboard
as good results as i—vector-based classifiers. Cellular, Parts 1 and 2 datasets, for a total of 79185 utterances from

4. EXPERIMENTS
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Fig. 1. Plots of the Grimary Of @ PLDA and a PSVM systems, using i—vectors or e—vectors, as &domf the size of the number of speaker
in the training set, for the first two conditions (Interview and phone call witladlded noise) of the core extended NIST SRE 2012 tests.

perform the corresponding i—vector systems. The same behavior can

0.46 e-e I[VPLDA === IVPSVM | > ] :
o—e EVPLDA o= EV PSVM‘ be observed looking at the blue lines, corresponding to the PSVM
0.44 \ systems. Thus, if the eigenvoice matiikis trained with a large
0.42) enough number of speakers, the extracted e—vectors are more infor
o 40‘\_\\\ mative about the speaker identity than the corresponding i-vectors,
G ) ..\\k extracted by using matrif. Also evident is that a PSVM system
w 0.38 DN N = trained with all available data is better than the corresponding PLDA
2 036 N, T e system for all conditions.
o N AL . .
0.34 LELLLITT ™ Table 1 summarizes the results of a set of experiments performed
N on the same evaluation set, in terms of DCFO08 agh£ cost func-
032 tions [27, 20], using i—vectors or e—vectors. Table 2 shows the rela-
030551000 1500 2600 3500 3000 3500 4000 4500 tive average performance improvement of the systems that we com-
Speakers pare. In particular, its “EV vs EV” column gives the relative im-
(a) Phone call in noisy environmenp&nary provement of a system using e—vectors with respect to the same sys-

tem using e—vectors. Label “DNN vs no DNN" refers to the DCF
Fig. 2 Plots of the Gimay Of @ PLDA and a PSVM systems, us- improvement given by a “phonetic’ DNN-GMM system with re-
ing i—vectors or e—vectors, as a function of the size of the numbegpect to the corresponding standard acoustic GMM approach. The
of speaker in the training set, for condition 5 (Phone call in noisyperformance gains obtained by the PSVM model with respect to the

environment) of the core extended NIST SRE 2012 tests. corresponding acoustic or phonetic PLDA models are shown in col-
umn “PSVM vs PLDA”, and the last column of the table, “System vs

reference”, reports the improvement observed for each system with

4103 speakers. The i—vector and e—vector dimension were both g&spect to its reference.
to d = 400. The matricesT and E used for these experiments were esti-
Classification has been performed by means of PLDA and by th&ated with the full set of training data previously described.
PSVM classifier illustrated in [3, 4]. Gender—independent models  The first row of Table 1 reports the results, for all conditions,
were trained using the NIST SRE 2004—2010 datasets [20, 26], for@f “PLDA IV": the baseline GMM-based PLDA system using i~
total of 42522 utterances of 3209 speakers. vectors. Its average performance is shown in the last column. The

As a first experiment, we evaluated the performance of a PLDAPLDA EV” system is identical to the first one, but uses e—vectors
and of a PSVM classifier on the core extended NIST SRE 2012 testgather than i-vectors. Itimproves the average decision cost functions
using i-vectors or e-vectors models trained with the speech segpproximately by 8%, as shown in Table 2.
ments of an increasing number of speakers randomly selected among We also assessed the quality of e—vectors extracted by using the
the 4103 available. In Figure 1 we report thgifary results of these  DNN posteriors of the hybrid DNN/GMM architecture described in
systems as a function of the number of speakers in the training sgt0]. The performance of the system using i-vectors, “PLDA DNN
for the first two conditions, which refer to interview and phone calls!V”, achieves 13% improvement with respect to the baseline “PLDA
without added noise, whereas Figure 2 shows the results for condiV”, and the corresponding e—vector system, “PLDA DNN EV”,
tion 5 (phone calls in noisy environment). The figures for the othegains 14% with respect to “PLDA EV” system. The contribution
two conditions (interview and phone calls with added noise) are simef our DNN to performance gain is, thus, of the order of 13%, but an
ilar. Looking at the plots, it is evident that the systems based on thedditional 10% improvement is obtained by using e—vectors rather
eigenvoice subspace suffer the lack of training speakers. Howevdhan i-vectors also with this “phonetic” approach. Using the DNN—
considering the PLDA Gimary results using i-vectors and e—vectors GMM approach and e-vectors we get approximately 22% improve-
(the dashed and solid red lines in the graphs, respectively), the sygent of the Grimary With respect to the baseline “PLDA IV”.
tems using e—vectors estimated with more than 2000 speakers out- Finally, a third set of experiments was performed to verify that
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Table 1: DCFO08 and Grimary COSt functions results of a set of PLDA and PSVM systems, using witttier® (V) or e~vectors (EV), on the
core extended NIST SRE 2012 tests. Label DNN refers to the hybrid-E3NAM framework.

Cond 1 Cond 2 Cond 3 Cond 4 Cond 5
System interview phone call interview phone call phone call Average
without noise without noise with added noise | with added noise | noisy environment

DCF08 Gyimi2 | DCFO8  Gyimi2 | DCFO8  Gyimi2 | DCFO8  Gyimiz | DCFO08  Gyimi2 | DCF08  Gyimi2
PLDA IV 0.149 0.308 | 0.121 0.321 | 0.120 0.251 | 0.217 0.455 | 0.143 0.364 | 0.150 0.340
PLDA EV 0.141 0.294 | 0.106 0.288 | 0.133 0.248 | 0.183 0.400 | 0.129 0.325 | 0.138 0.311
PLDA DNN IV 0.146 0.279 | 0.100 0.264 | 0.118 0.229 | 0.184 0.396 | 0.120 0.305 | 0.134 0.295
PLDA DNN EV 0.137 0.262 | 0.085 0.237 | 0.118 0.216 | 0.155 0.345 | 0.103 0.272 | 0.120 0.266
PSVM IV 0.117 0250 | 0.114 0.295| 0.103 0211] 0192 0421] 0136 0.331] 0132 0.302
PSVM EV 0.111 0.234 | 0.106 0.265 | 0.095 0.192 | 0.164 0.375 | 0.127 0.303 | 0.121 0.274
PSVM DNN IV 0.114 0.233 | 0.088 0.239 | 0.104 0.199 | 0.159 0.363 | 0.105 0.272 | 0.114 0.261
PSVMDNNEV | 0.108 0.218 | 0.077 0.209 | 0.101 0.185 | 0.141 0.320 | 0.093 0.238 | 0.104 0.234

Table 2 DCFO08 and Grimary average improvement of a set of PLDA and PSVM systems on the gteeded NIST SRE 2012 tests.

Performance Improvement
System DCF08 Gy EVvs IV DNN vs no DNN PSVMvs PLDA | System vs reference
M2 "DCF08 Gorimiz | DCF08  Goimiz | DCF08  Guimiz | DCF08  Gyimiz

PLDA IV 0.150 0.340 PLDA reference
PLDA EV 0.138 0.311 | 8.0% 8.5% 8.0 % 8.5%
PLDA DNN IV 0.134 0.295 10.7% 13.2% 10.7% 13.2%
PLDA DNN EV 0.120 0.266 | 10.4% 9.8% | 13.0% 14.5% 20.0% 21.8%
PSVM IV 0.132 0.302 12.0%  11.2% PSVM reference
PSVM EV 0.121 0.274 | 8.3% 9.3% 12.3% 11.9% | 83% 9.3%
PSVM DNN IV 0.114 0.261 13.6% 13.6% | 24.0%  23.2% | 13.6% 13.6%
PSVMDNNEV | 0.104 0.234 | 8.8% 10.3% | 14.0% 14.6% | 24.6% 248% | 21.2% 22.5%

the e—vectors are also better than i—vectors also using a more ac-
curate baseline discriminative classifier. The baseline performance
of our PSVM approach [3, 4] is approximately 12% better than the [1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
baseline PLDA both for i-vectors and e—vectors. Again, the effec-

tiveness of the e—vectors is evident with respect to the i-vectors:

the

former keep a 10% accuracy gain both using vectors extracted by

means of the standard GMM approach or exploiting the posteriors

of the hybrid DNN/GMM framework.

Overall, using e-vectors we obtain approximately 10§&y

(2]

improvement with respect the corresponding i—vectors systems ei-
ther using a PLDA or a PSVM classifier, and 20% performance im-

provement with respect to the PLDA and PSVM baseline i—vector

systems using DNN-GMM and e-vectors.

5. CONCLUSIONS

(3]

(4]

In this work we have verified that the eigenvoice space has more
information about the speakers than i-vector subspace, because tl e]
latter includes more channel effects. To exploit this information, we
have proposed a simple training procedure of the eigenvoice matrix,
and introduced the e—vector, a compact representation of a speecl®]
segment, equivalent to i—vectors, but extracted exploiting the JFA

speaker subspace.
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