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ABSTRACT

Systems based on i–vectors represent the current state–of–the–art
in text–independent speaker recognition. In this work we introduce
a new compact representation of a speech segment, similar to the
speaker factors of Joint Factor Analysis (JFA) and to i–vectors, that
we call “e–vector”. The e–vectors derive their name from the eigen-
voice space of the JFA speaker modeling approach. Our working hy-
pothesis is that JFA estimates a more informative speaker subspace
than the “total variability” i–vector subspace, because the latter is
obtained by considering each training segment as belonging to a dif-
ferent speaker. We propose, thus, a simple “i–vector style” modeling
and training technique that exploits this observation, and estimates a
more accurate subspace with respect to the one provided by the clas-
sical i–vector approach, as confirmed by the results of a set of tests
performed on the extended core NIST 2012 Speaker Recognition
Evaluation dataset. Simply replacing the i–vectors with e–vectors
we get approximately 10% average improvement of the Cprimary cost
function, using different systems and classifiers. These performance
gains come without any additional memory or computational costs
with respect to the standard i–vector systems.

Index Terms— Speaker Recognition, eigenvoice, Joint Factor
Analysis, i–vectors, e–vectors.

1. INTRODUCTION

Systems based on i–vectors [1], and on Probabilistic Linear Dis-
criminant Analysis (PLDA) [2] or discriminative classifiers [3, 4]
represent the current state–of–the–art in text–independent speaker
recognition. A speech segment is represented in this approach by
a low–dimensional “identity vector” or i–vector, obtained from the
statistics of a Gaussian Mixture Model (GMM) supervector [5] by a
Maximum a Posteriori point estimate of a posterior distribution [6].
The i–vector model constrains the GMM supervectors, represent-
ing both the speaker and channel characteristics of a given speech
segment, to live in a single subspace according to:

s = u+Tw , (1)

whereu is the UBM supervector,T is a low-rank rectangular matrix
with C × F rows andM columns, andC andF are the number
of GMM components and feature dimensions, respectively. TheM

columns ofT are vectors spanning the “total variability” space, and
w is a random vector of sizeM having a standard normal prior dis-
tribution.

In a recently proposed approach [7, 8, 9, 10, 11], the standard
acoustic Universal Background Model (UBM) is replaced by a fine–
grained “phonetic” UBM obtained by associating a single Gaussian
to each output unit of a DNN, trained to discriminate among the
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states of a set of context–dependent phonetic units. For each frame,
the posterior probability of the DNN states is used as the occupation
probability for computing the usual statistics that allow training the
UBM Gaussian parameters, and successively to extract the i–vectors.

I–vector modeling stems from the Joint Factor Analysis (JFA)
approach [12, 13, 14]. JFA models the speaker and channel variabil-
ity of a Gaussian supervector by means of a linear combination of
eigenvoice, eigenchannel and MAP adaptated supervectors. Each of
them can be represented by a low–dimensional set of factors that can
be estimated according to the iterative procedure illustrated in [12].
It has, however, experimentally shown in [15] that the eigenchan-
nel factors keep some correlation with the eigenvoice factors, i.e.,
they still convey some information about the speaker identity. This
observation motivated the introduction of the i-vector approach as a
feature extractor [16, 1], where speaker and channel variability are
modeled in a single low–dimensional space spanned by the column
vectors of a single matrixT.

Although the i–vector subspace also includes channel variabil-
ity, which is detrimental for speaker recognition, i–vectors have
shown to provide a large performance boost over JFA–based meth-
ods. The main advantage of the i–vector representation is that the
problem of intersession variability is deferred to a second stage,
dealing with low–dimensional vectors rather than with the high–
dimensional supervector space of the GMM supervectors. This
allows training, in a low dimensional subspace, better classifiers,
such as PLDA and Pairwise Support Vector Machine (PSVM) [3, 4].
Furthermore, in such low dimensional space it is possible to perform
transformations that are particularly suited for enhancing the classi-
fier performance, such as compensating development and evaluation
set mismatches by means of length normalization [17, 18], or trans-
forming i–vectors so that they better fit the classifier assumptions
[19]. Finally, PLDA and PSVM models allow exploiting multiple
recordings of the same speaker by simply averaging their corre-
sponding i–vectors. This simple approach has shown to be more
effective than properly estimation of multi–session likelihood ratios
in PLDA.

In this work we propose a speaker modeling approach that esti-
mates a more accurate speaker subspace with respect to the one pro-
vided by standard i–vector models. It extracts a compact representa-
tion of a speech segment, similar to i–vectors, but richer in speaker
information, as confirmed by the results of a set of experiments per-
formed on the extended core NIST SRE-2012 tests [20]. By anal-
ogy, we will refer to this representation as “eigenvoice-vector”, or
“e–vector” for short.

Our main idea is to extract more accurate i–vectors, relying on
the eigenvoice space, which should be more accurate than the one
represented by matrixT , The novelty of our approach consists in
estimating an i–vector subspace matrix so that it spans the same
directions of the JFA speaker subspace. In particular, we estimate a
linear transformation that allows keeping the span of the speaker–
specific subspace, but at the same time allows learning a prior suited
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for i–vector extraction rather than for speaker–factor extraction.
This is simply obtained by considering each training segment as
belonging to a different speaker, as it is done in standard i–vector
training, and re–training the i–vector subspace, starting from the
JFA speaker matrix, by means of Minimum Divergence Estimation
(MDE) iterations only. This corresponds to a right–multiplication
of the JFA eigenvoice matrix with the Cholesky decomposition
of P = 1

N

∑
i
E[wiw

T

i ], where the sum extends over all theN
training i–vectors, so that the empirical distribution of the e-vectors
conforms to the standard normal prior [14, 2, 21]. Thus, we keep the
span of the eigenvoice space, but we estimate a better model prior
with the aim of better estimating the e–vector posterior.

The paper is organized as follows: Section 2 recalls the eigen-
voice, JFA, and i–vector approaches. Section 3 introduces the e–
vectors and their training procedure. The experimental results are
presented and commented in Section 4, and conclusions are drawn
in Section 5.

2. SUPERVECTOR REPRESENTATIONS

A model–based speaker adaptation approach was proposed in [22],
which constrains the adapted model to be a linear combination of
a small number of basis vectors obtained from a set of reference
speakers. In this approach, these “eigenvoice” vectors are estimated
with the objective of capturing the most important components
of variation among the reference speakers. The adaptation data
are used for obtaining, by means of Maximum Likelihood Eigen-
Decomposition, the weights of the linear combination, leading to
a low–dimensional vector representation of a new speaker in the
eigenvoice space. Eigenvoice modeling, thus, aims at character-
izing the speaker within the speaker subspace, and thanks to the
correlations between GMM components, allows adapting also rarely
observed Gaussians. This modeling approach was then also pro-
posed for speaker recognition in [23], and in [24], where eigenvoice
MAP adaptation was introduced.

In [25] the eigenvoice approach has been applied effectively to
the problem of modeling intra–speaker variability, by compensating
the session (channel) variability at recognition time. Finally JFA
modeling was introduced in [12], where the eigenvoice model was
extended to deal with intersession speaker variability, and channel
mismatches between enrollment and evaluation conditions, taking
care of the channel effects also in speaker enrollment. This was ob-
tained by defining two subspaces: the speaker space represented by
an eigenvoice matrixV, and the channel space represented by an
eigenchannel matrixU. In particular, JFA models the speaker and
channel dependent supervectors for a given speech segment as:

s = u+Vy +Ux+Dz , (2)

whereu is the UBM supervector,V andU are rectangular low rank
matrices,D is a diagonal matrix, andy, x and z are the speaker,
channel, and residual (or common) factors, respectively.

However, since the JFA channel factors do also contain infor-
mation about the speaker identity [15], the i–vector approach has
been introduced in [16, 1], where the speaker and channel dependent
supervector model for a given speech segment was simplified as re-
called in (1). Although the JFA speaker subspace better captures
relevant speaker information, in the last years it has been shown that
directly using this subspace in the JFA framework does not provide
as good results as i–vector–based classifiers.

3. E–VECTORS

It is worth noting that, due to the substantial similarity of the models
(2), and (1), matrixT training can be performed similarly to eigen-
voiceV matrix training. The only difference is that inV matrix esti-
mation, the segments of a given speaker are considered as belonging
to a single class, whereas inT matrix estimation, all segments are
considered as belonging to different classes. Since matrixT spans
both the speaker and channel subspace, and it is estimated consider-
ing each training segment as belonging to a different speaker, matrix
T does not model the speaker subspace as well as the eigenvoice
matrixV.

On the basis of this observation, we propose a speaker modeling
approach that tries to take advantage of the best of the JFA and of
the i-vector techniques. We keep the i–vectors framework to exploit
the low–dimensionality of a voice segment representation, but we
estimate a differentT matrix, which better accounts for the speaker
space. This new matrix,E, is similar to theT matrix, but it is esti-
mated with the additional constraint that it spans the same subspace
represented by the eigenvoice matrix trained on the same dataset.

The steps for training theE matrix are as follows:

• First aV matrix is trained exactly as matrixT is, but assuming
that the segments of a given speaker belong to a single class,
i.e., accumulating the sufficient statistics per speaker, rather
than per speaker segment. It is worth noting that we perform
this procedure as the eigenvoice estimation of [22, 24]. Al-
ternatively, it is possible to train theV matrix together with
matricesU andD in the JFA framework.

• In the second step, matrixE is initialized by V. Then, the
E matrix is trained considering each training segment as be-
longing to a different speaker, as it is done for the estimation
of theT matrix, but applying only Minimum Divergence Es-
timation (MDE) iterations. MDE modifies theE matrix so
that the empirical e–vector posterior conforms to the standard
normal prior, increasing the data likelihood but leaving un-
changed the span of matrixE.

The resulting e–vector model is, thus, similar to the i–vector model:

s = u+Ew , (3)

but matrix E better spans the speaker variability subspace. This
means that e-vectors are more informative than i-vectors having the
same dimensions, because some directions spanned by theT matrix
mainly represent channel effects. The latter are reduced in matrixE.

Since the segments of a given speaker are considered as a sin-
gle class in matrixV training, the number of different speakers in
the training corpora must be large enough to accurately model the
speaker subspace. The effects of the dimension of the speaker popu-
lation is analyzed in the next section, devoted to the experiments.

4. EXPERIMENTS

We compared the performance of i–vectors and e–vectors systems on
the core extended NIST SRE 2012 tests [20]. For these experiments
we used the 45-dimensional feature vectors obtained by stacking 18
cepstral (c1-c18), 19 delta (∆c0-∆c18) and 8 double–delta (∆∆c0-
∆∆c7) parameters. We trained gender–independent i–vector and e–
vector extractors, based on a 1024–component diagonal covariance
UBM, estimated with data from NIST SRE 2004–2010, and addi-
tionally with the Switchboard II, Phases 2 and 3, and Switchboard
Cellular, Parts 1 and 2 datasets, for a total of 79185 utterances from
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(a) Interview without added noise Cprimary

500 1000 1500 2000 2500 3000 3500 4000 4500
Speakers

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Co
nd

02
 C

pr
im

ar
y

IV PLDA
EV PLDA

IV PSVM
EV PSVM

(b) Phone call without added noise Cprimary

Fig. 1: Plots of the Cprimary of a PLDA and a PSVM systems, using i–vectors or e–vectors, as a function of the size of the number of speaker
in the training set, for the first two conditions (Interview and phone call without added noise) of the core extended NIST SRE 2012 tests.
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(a) Phone call in noisy environment Cprimary

Fig. 2: Plots of the Cprimary of a PLDA and a PSVM systems, us-
ing i–vectors or e–vectors, as a function of the size of the number
of speaker in the training set, for condition 5 (Phone call in noisy
environment) of the core extended NIST SRE 2012 tests.

4103 speakers. The i–vector and e–vector dimension were both set
to d = 400.
Classification has been performed by means of PLDA and by the
PSVM classifier illustrated in [3, 4]. Gender–independent models
were trained using the NIST SRE 2004–2010 datasets [20, 26], for a
total of 42522 utterances of 3209 speakers.

As a first experiment, we evaluated the performance of a PLDA
and of a PSVM classifier on the core extended NIST SRE 2012 tests,
using i–vectors or e–vectors models trained with the speech seg-
ments of an increasing number of speakers randomly selected among
the 4103 available. In Figure 1 we report the Cprimary results of these
systems as a function of the number of speakers in the training set
for the first two conditions, which refer to interview and phone calls
without added noise, whereas Figure 2 shows the results for condi-
tion 5 (phone calls in noisy environment). The figures for the other
two conditions (interview and phone calls with added noise) are sim-
ilar. Looking at the plots, it is evident that the systems based on the
eigenvoice subspace suffer the lack of training speakers. However,
considering the PLDA Cprimary results using i–vectors and e–vectors
(the dashed and solid red lines in the graphs, respectively), the sys-
tems using e–vectors estimated with more than 2000 speakers out-

perform the corresponding i–vector systems. The same behavior can
be observed looking at the blue lines, corresponding to the PSVM
systems. Thus, if the eigenvoice matrixE is trained with a large
enough number of speakers, the extracted e–vectors are more infor-
mative about the speaker identity than the corresponding i–vectors,
extracted by using matrixT. Also evident is that a PSVM system
trained with all available data is better than the corresponding PLDA
system for all conditions.

Table 1 summarizes the results of a set of experiments performed
on the same evaluation set, in terms of DCF08 and Cprimary cost func-
tions [27, 20], using i–vectors or e–vectors. Table 2 shows the rela-
tive average performance improvement of the systems that we com-
pare. In particular, its “EV vs EV” column gives the relative im-
provement of a system using e–vectors with respect to the same sys-
tem using e–vectors. Label “DNN vs no DNN” refers to the DCF
improvement given by a “phonetic” DNN–GMM system with re-
spect to the corresponding standard acoustic GMM approach. The
performance gains obtained by the PSVM model with respect to the
corresponding acoustic or phonetic PLDA models are shown in col-
umn “PSVM vs PLDA”, and the last column of the table, “System vs
reference”, reports the improvement observed for each system with
respect to its reference.

The matricesT andE used for these experiments were esti-
mated with the full set of training data previously described.

The first row of Table 1 reports the results, for all conditions,
of “PLDA IV”: the baseline GMM–based PLDA system using i–
vectors. Its average performance is shown in the last column. The
“PLDA EV” system is identical to the first one, but uses e–vectors
rather than i-vectors. It improves the average decision cost functions
approximately by 8%, as shown in Table 2.

We also assessed the quality of e–vectors extracted by using the
DNN posteriors of the hybrid DNN/GMM architecture described in
[10]. The performance of the system using i–vectors, “PLDA DNN
IV”, achieves 13% improvement with respect to the baseline “PLDA
IV”, and the corresponding e–vector system, “PLDA DNN EV”,
gains 14% with respect to “PLDA EV” system. The contribution
of our DNN to performance gain is, thus, of the order of 13%, but an
additional 10% improvement is obtained by using e–vectors rather
than i–vectors also with this “phonetic” approach. Using the DNN–
GMM approach and e–vectors we get approximately 22% improve-
ment of the Cprimary with respect to the baseline “PLDA IV”.

Finally, a third set of experiments was performed to verify that
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Table 1: DCF08 and Cprimary cost functions results of a set of PLDA and PSVM systems, using with i–vectors (IV) or e–vectors (EV), on the
core extended NIST SRE 2012 tests. Label DNN refers to the hybrid DNN–GMM framework.

System

Cond 1 Cond 2 Cond 3 Cond 4 Cond 5
interview phone call interview phone call phone call Average

without noise without noise with added noise with added noise noisy environment
DCF08 Cprim12 DCF08 Cprim12 DCF08 Cprim12 DCF08 Cprim12 DCF08 Cprim12 DCF08 Cprim12

PLDA IV 0.149 0.308 0.121 0.321 0.120 0.251 0.217 0.455 0.143 0.364 0.150 0.340
PLDA EV 0.141 0.294 0.106 0.288 0.133 0.248 0.183 0.400 0.129 0.325 0.138 0.311
PLDA DNN IV 0.146 0.279 0.100 0.264 0.118 0.229 0.184 0.396 0.120 0.305 0.134 0.295
PLDA DNN EV 0.137 0.262 0.085 0.237 0.118 0.216 0.155 0.345 0.103 0.272 0.120 0.266

PSVM IV 0.117 0.250 0.114 0.295 0.103 0.211 0.192 0.421 0.136 0.331 0.132 0.302
PSVM EV 0.111 0.234 0.106 0.265 0.095 0.192 0.164 0.375 0.127 0.303 0.121 0.274
PSVM DNN IV 0.114 0.233 0.088 0.239 0.104 0.199 0.159 0.363 0.105 0.272 0.114 0.261
PSVM DNN EV 0.108 0.218 0.077 0.209 0.101 0.185 0.141 0.320 0.093 0.238 0.104 0.234

Table 2: DCF08 and Cprimary average improvement of a set of PLDA and PSVM systems on the core extended NIST SRE 2012 tests.

System
Performance Improvement

DCF08 Cprim12
EV vs IV DNN vs no DNN PSVM vs PLDA System vs reference

DCF08 Cprim12 DCF08 Cprim12 DCF08 Cprim12 DCF08 Cprim12

PLDA IV 0.150 0.340 PLDA reference
PLDA EV 0.138 0.311 8.0% 8.5% 8.0 % 8.5%
PLDA DNN IV 0.134 0.295 10.7% 13.2% 10.7% 13.2%
PLDA DNN EV 0.120 0.266 10.4% 9.8% 13.0% 14.5% 20.0% 21.8%

PSVM IV 0.132 0.302 12.0% 11.2% PSVM reference
PSVM EV 0.121 0.274 8.3% 9.3% 12.3% 11.9% 8.3 % 9.3%
PSVM DNN IV 0.114 0.261 13.6% 13.6% 24.0% 23.2% 13.6% 13.6%
PSVM DNN EV 0.104 0.234 8.8% 10.3% 14.0% 14.6% 24.6% 24.8% 21.2% 22.5%

the e–vectors are also better than i–vectors also using a more ac-
curate baseline discriminative classifier. The baseline performance
of our PSVM approach [3, 4] is approximately 12% better than the
baseline PLDA both for i–vectors and e–vectors. Again, the effec-
tiveness of the e–vectors is evident with respect to the i–vectors: the
former keep a 10% accuracy gain both using vectors extracted by
means of the standard GMM approach or exploiting the posteriors
of the hybrid DNN/GMM framework.

Overall, using e–vectors we obtain approximately 10% Cprimary

improvement with respect the corresponding i–vectors systems ei-
ther using a PLDA or a PSVM classifier, and 20% performance im-
provement with respect to the PLDA and PSVM baseline i–vector
systems using DNN–GMM and e–vectors.

5. CONCLUSIONS

In this work we have verified that the eigenvoice space has more
information about the speakers than i–vector subspace, because the
latter includes more channel effects. To exploit this information, we
have proposed a simple training procedure of the eigenvoice matrix,
and introduced the e–vector, a compact representation of a speech
segment, equivalent to i–vectors, but extracted exploiting the JFA
speaker subspace.

E–vectors have shown to be a very good, no–cost, replacement
of i–vectors for different extraction approaches and classifiers. Care
has to be taken that the training corpus contains enough speakers and
multiple recordings to accurately model the speaker subspace.
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