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ABSTRACT

I-vector training and extraction assume that a speech file is spoken
by a single speaker. This work considers the effects of violating that
assumption with the presence of cross-talk or multi-speaker conver-
sations. First, it is demonstrated that these problematic speech files
can be detected using the i-vector representation itself. The impact of
these violations of the single-speaker assumption are then explored
along with strategies to mitigate it. It is shown that, even in pre-
dominantly clean data, the removal of cross-talk can provide modest
gains, but that T matrix and PLDA training are largely robust to these
types of noise. It is also shown that detection in front of diarization
is a reasonable strategy in the presence of data with an unknown pro-
portion of multi-speaker conversations. Finally, in the course of this
work, evidence is found that cross-talk detection and multi-speaker
detection may in fact be different tasks that require separately trained
detectors.

Index Terms— speaker diarization, speaker recognition, i-
vectors

1. INTRODUCTION

Speech technology researchers often make assumptions about their
audio in the process of exploring new methods and ideas. Some-
times, these assumptions are even explicitly capitalized on to im-
prove performance, such as speaker adaptation in automatic speech
recognition (ASR) assuming that the speech originates from a single
speaker. But, these assumptions may not always hold true in noisy
data, and so front-end mitigation can be required. For the single-
speaker assumption, the front-end mitigation is speaker diarization,
which groups speech into segments spoken by the same person.

And speaker adaptation is not the only technology that expects
speech from a single speaker. I-vectors, the audio representation
widely used for speaker and language recognition as well as speaker
adaptation in recent ASR algorithms, assume in both training and
test-time embedding that the speech in a given file all comes from
the same speaker. So, the presence of multiple speakers will vio-
late this assumption and likely lessen the effectiveness of the rep-
resentation. This effect has clearly been shown in the past [1, 2]
for multi-speaker test conversations. In [2], the speaker recognition
error rate increased by over 50% (relative) without diarization. In-
terest in this topic was recently renewed with the 2016 Speakers in
the Wild Challenge [3], where it was shown again that diarization
can improve speaker recognition rates in uncontrolled audio [4, 5].

The work that follows more expansively explores the effect of
violating the single-speaker assumption, considering both cross-talk
and multi-speaker conversations, and the full i-vector speaker recog-
nition pipeline is examined, including training and testing.

The discussion will first focus on the detection of the problem-
atic files. Ideally, these conversations could be easily found by di-
arizing all files and assuming that the clean, single-speaker files will
simply be found to have only one speaker. As later results will show,
this assumption is not necessarily valid, and unnecessary diariza-
tion can potentially degrade performance. Furthermore, from an ef-
ficiency point of view, state-of-the-art i-vector segment diarization
is also a potentially expensive process, requiring the extraction and
clustering of hundreds of i-vectors for each file. A simple classifier
front-end that efficiently identifies the need (or absence of need) for
diarization would allow for more efficient data processing.

An additional aspect of this work is the consideration of cross-
talk in the audio. Cross-talk in conversational telephone speech
refers to the undesired leakage of one side of the call into the au-
dio of the other side. As a result, cross-talk is a potentially different
condition from a multi-speaker conversation, because, in cross-talk,
the interfering speech is often significantly distorted and degraded,
unlike in a true multi-speaker conversation where all speakers are
processed through similar channels.

Several related tasks have been explored in the past, but, in most
cases, that work was looking to identify usable frames in the pres-
ence of overlapping speech, rather than identify entire conversations
that include multiple speakers. These detectors were intended as a
front-end for various technologies such as speaker identification [6]
or speaker diarization [7], and there is also evidence that these types
of detections would benefit speech recognition as well [8]. In past
work, experiments have tested detectors for overlapping speech that
utilize a wide range of features, including spectral autocorrelations
[9], kurtosis [10] gammatone subband frequency modulation fea-
tures [11], and multi-pitch tracking [6]. However, in this work, we
aim to use features that are already computed in the i-vector pipeline,
in order to minimize the cost of the detection process.

The task of speaker counting is actually a closer match to the
current application, where the number of speakers in a conversation
are estimated. In our current scenario, the counter would be reduced
to a binary decision, separating conversations into single-speaker
and multi-speaker, but the overall goal is more closely matched here
than with overlap detection. In past work, speaker counting has typ-
ically been attempted with full speaker diarization systems [12, 13,
14], while we seek a more efficient solution.

The work that follows will first explore the tasks of cross-talk
detection and multi-speaker conversation detection. These experi-
ments will be followed by several that consider the effect these de-
tections can have on downstream i-vector tasks, either with filtering
of training lists or diarization of test files. Through the course of
these experiments, it will be shown that cross-talk detection can im-
prove performance even in clean data sets, while multi-speaker di-
arization can significantly reduce the diarization computation needed
in the face of multi-speaker conversations. Additionally, results will
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Feature EER (Raw) EER (Length Norm)
Zero-Order Stats 8.38 6.45
First-Order Stats 4.91 4.97
Second-Order Stats 5.48 5.79
I-Vectors 9.98 4.80

Table 1. Performance for SVM classification of the sufficient
statistics and resulting i-vector for cross-talk detection in terms of
equal error rate (EER). All representations perform reasonably well,
though length-normalized acoustic i-vectors yield the lowest errors.

suggest that cross-talk detection and multi-speaker conversation de-
tection may be more different tasks than intuition would suggest.

2. CROSS-TALK DETECTION WITH I-VECTORS

If detection of cross-talk and multi-speaker conversations is desired
in an i-vector pipeline, it is sensible and efficient to utilize the ana-
lytics already processed in the task to identify the problematic seg-
ments. In the case of i-vectors, these representations include the
acoustic features, the sufficient statistics (zero-, first-, and second-
order) computed from the UBM, and the extracted i-vectors them-
selves. Effective detection of cross-talk using any of these features
would allow for adding this process to the i-vector pipeline at very
little computational cost.

2.1. Automatic Cross-Talk Labeling in Switchboard I

In order to measure the ability of each of these feature types to detect
cross-talk, an evaluation on Switchboard I was built. Cross-talk is
anecdotally known to be present in many conversation sides in the
Switchboard I corpus, but labels identifying the distorted sides are
not automatically provided. So, to estimate these labels, a simple
spectral comparison across conversation sides was used. First, turn-
taking was established with word-level forced alignments from the
transcripts. Then, the presence of the speech from the active side
in the conversation was estimated in the inactive side with a scalar-
weighted least-squares optimization.

β = min
α

∑
f,t∈TA

(αXA[f, t]−XB [f, t])
2

where f and t are frequency and time bins, respectively, and TA is
the set of time frames where side A is the active speaker. Cross-talk
can then be detected by identifying conversation sides with a large
multiplicative coefficient α, which estimates the strength of the ac-
tive speech in the inactive conversation side, and a small ratio of
the solution β to the original energy in the inactive spectrum XB ,
which estimates the remaining energy in the inactive side after re-
moving the speech. Through some informal listening experiments,
it was determined that α > 0.01 and β < 0.95 yielded reasonable
estimates of cross-talk labels. With this process, 2,975 of the 4,870
sides in Switchboard I that were tested were labeled with cross-talk.
The labels extracted with this process will undoubtedly have noise,
but they allow for some instructive exploration of detection features.
The detection systems will then be later tested within the context of
downstream applications with more manicured evaluation labels.

Train X-Talk (Swbd) Multi (Fisher) Multi (SRE)
X-Talk (Swbd) 4.80 28.12 27.12
Multi (Fisher) 17.58 11.84 11.85
Multi (SRE) 17.15 13.33 9.83

Table 2. EER rates for detecting cross-talk and multi-speaker con-
versations. All experiments use length-normalized i-vectors with
SVMs. There is a clear mismatch between the detectors and the
tasks, with each performing much better at its own task.

2.2. Cross-Talk Detection Features

The labels estimated for cross-talk in Switchboard I can then be used
to compare feature representations for detection. Specifically, we
will consider the sufficient statistics computed in the i-vector ex-
traction process along with the extracted i-vectors themselves. The
i-vector system used here and in all following experiments trained its
universal background model (UBM) and T matrix on Fisher English
data. The UBM consists of a 2048-component GMM with diagonal
covariances, and the T matrix subsequently projects the representa-
tion to 600 dimensions. Probabilistic Linear Discriminant Analysis
(PLDA) trained on data from the NIST SRE 04, 05, 06, and 08 data
further reduces the dimensionality to 200 dimensions.

The results for the cross-talk detection with zero-order statistics
(counts), first-order statistics (means), second-order statistics (co-
variances), and i-vectors can be seen in Table 1. In all cases, the
features were classified with support vector machines (with output
calibrated into probabilities with Platt scaling [15]), and each fea-
ture’s results are shown with and without length normalization [16].
The Switchboard data was broken into 5 folds, and evaluation was
performed with cross-fold validation.

The results in Table 1 show that the cross-talk labels can indeed
be learned well with the existing analytics from the i-vector process.
Of the statistics, the first-order are most effective, followed closely
by the second-order, while the zero-order statistics give the highest
error rates. However, the i-vectors themselves are most effective
once length-normalized, which is not surprising given the success of
the first-order statistics and the close relationship between those two
representations.

Based on their performance, the experiments to follow will use
the length-normalized i-vector representations for cross-talk and
multi-speaker detection. For completeness, several scalar analytics
derived from the statistics, such as frame counts and entropy of
the zero-order statistics, were also explored, but none achieved an
error rate below 22%, and the fusion of all scalar features still only
yielded a 17.4% error rate, all substantially worse performances than
the length-normalized i-vectors.

3. MULTI-SPEAKER CONVERSATION DETECTION
WITH I-VECTORS

Detecting speech with more than one speaker is theoretically very
similar to detecting cross-talk, but, as discussed above, they may
indeed be different tasks. To explore this relationship, a separate set
of training corpora were assembled to detect multiple speakers from
Fisher English and NIST SRE ’04, ’05, ’06, and ’08. These data
sets were selected because they are expected to be less corrupted by
cross-talk than Switchboard, and we desire data without cross-talk
in order to study the differences between the two tasks.

For each corpus (Fisher or SRE), the two sides of a call were
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T Matrix Training List EER DCF
Fisher 2.57 0.230
Fisher (no x-talk) 2.74 0.241
Fisher (no multi-spkr) 2.57 0.235
Fisher+Swbd 2.59 0.243
Fisher+Swbd (no x-talk) 2.46 0.240
Fisher+Swbd (no multi-spkr) 2.61 0.246
Fisher+SummedSRE 2.51 0.230
Fisher+SummedSRE (no x-talk) 2.51 0.240
Fisher+SummedSRE (no multi-spkr) 2.55 0.236

Table 3. EER and DCF on SRE10 for various training lists. Only
small effects are seen from the removal of multi-speaker conversa-
tions or cross-talk, even after artificial addition of those corruptions.

summed for a randomly selected subset. This results in roughly 67%
of files with one speaker and the remaining 33% with two speakers.

Detection results are shown in Table 2, using the assembled
corpora from Fisher and SRE for multi-speaker detection and the
Switchboard labels for cross-talk. Note that, as with the previous
cross-talk experiments, systems trained and tested on the same data
used cross-fold validation with five folds.

We see in Table 2 that multi-speaker detection is possible with
the i-vector features, although the error rates are roughly double that
of the cross-talk task. Interestingly, the fact that i-vectors can be used
for these detections demonstrates that the presence of cross-talk or
multiple speakers impacts the i-vector representation.

These results also suggest that the system trained for cross-talk
detection struggles in identifying the summed conversations, and
the multi-speaker systems similarly struggle on cross-talk detec-
tion. One explanation of these results is that cross-talk detection
and multi-speaker conversation detection are actually significantly
different tasks. It is also possible that these discrepancies are due to
cross-corpus domain mismatch rather than variations in the task, but
later results in speaker recognition will indicate that the cross-talk
detector does appear to detect problematic audio across corpora.
Furthermore, the two multi-speaker detectors behave very similarly
despite being trained on different corpora.

4. CROSS-TALK AND MULTI-SPEAKER DETECTION
FOR I-VECTOR APPLICATIONS

The above sections explored the efficacy of i-vector representations
for cross-talk and multi-speaker conversation detection. While the
results suggest that the architecture does indeed have some value for
the task, simply detecting these conditions is not necessarily a useful
outcome. Instead, we next explore the impact these detections can
have in the context of downstream speaker recognition.

4.1. Total Variability Subspace Training

First we consider the training of the T matrix, during which it is as-
sumed that each audio recording has only one speaker and one chan-
nel. The presence of cross-talk or multiple speakers would violate
this assumption and potentially hinder the training of the parameters.

To explore this hypothesis, we tested an acoustic i-vector
speaker recognition system on the NIST SRE10 evaluation, measur-
ing equal error rate (EER) and the minimum detection cost function
(DCF) to compare performances. Unless otherwise stated, all sys-
tems used the Fisher English corpus to train the UBM, and the NIST

SRE ’04, ’05, ’06, and ’08 data to train the PLDA. Each system was
then varied according to the training data for the total variability
subspace (T matrix).

The initial system was trained on the entire Fisher English cor-
pus, and then a second and third system were trained with the Fisher
English list filtered down to exclude any files determined to have
cross-talk by the Switchboard-trained detector or any files deter-
mined to have multiple speakers by the Fisher-trained detector, re-
spectively. These results are shown in the first several entries of
Table 3. Neither reduction to the list improves the performance, and,
in fact, the cross-talk removal negatively affects the EER while both
hurt the DCF.

However, it is possible that these underwhelming results are re-
lated to the cleanliness of the Fisher English data. It is hard to im-
prove performance by removing speech with cross-talk or multiple
speakers if there aren’t many examples to start with. So, to en-
sure the presence of distortions, a second set of lists appended the
Switchboard data, which is known to have cross-talk, or the artifi-
cially summed SRE data to the Fisher English training list, as well as
appending the subset of Switchboard believed to be clean of cross-
talk or multi-speaker conversations according to the i-vector-based
detector to the Fisher English list.

The results for these systems can also be seen in Table 3. While
adding Switchboard to the training list actually slightly hurts in both
metrics versus the Fisher-only list, the removal of cross-talk from
this list yields improvements. While the DCF performance is only
a modest improvement on the full Fisher+Switchboard list, the EER
improves by a larger margin and even slightly outperforms the base-
line. So, while adding all of Switchboard to the T matrix training
hurts overall performance, adding only the screened subset can ac-
tually improve it. Multi-speaker detection offers no help for this list.
Adding summed SRE data to Fisher actually gives a small improve-
ment on its own, but neither detection task improves performance.

Similar tests were run to explore PLDA training, but little effect
was seen from altering the training lists.

4.2. Cleaning Test Segments

While the effects of cross-talk and multi-speaker conversations in
subspace training has not previously been thoroughly explored, pre-
vious experiments have demonstrated the negative effect that they
can have on speaker recognition trials [1, 2, 4, 5]. In past work, the
natural solution to this problem has been to diarize the multi-speaker
conversation, compare each resulting speaker to the speaker model,
and keep the maximum score across all diarized speakers to repre-
sent the log likelihood ratio of the entire file. We will employ the
same strategy here when diarization is used.

However, past experiments have only considered the case where
all conversations have multiple speakers, and it is known in advance
that all conversations require diarization. We instead consider the
case where an unknown subset of conversations have multiple speak-
ers, and so simply running diarization on all conversations may not
yield optimal results. Furthermore, diarization is a costly process,
and running it unnecessarily may be undesirable from an efficiency
standpoint in addition to potential performance ramifications.

In our experiment, we consider several scenarios:

• Original - the original SRE10 test list with no summed con-
versations

• Rare - 5% of test list summed to multi-speaker

• Half - 50% of test list summed to multi-speaker

• Full - 100% of test list summed to multi-speaker
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Original Rare Half Full
EER DCF % Diar. EER DCF % Diar. EER DCF % Diar. EER DCF % Diar.

No Diarization 2.57 0.230 0.0 4.06 0.275 0.0 10.22 0.504 0.0 14.90 0.745 0.0
Diarize X-Talk 2.47 0.229 5.0 3.65 0.266 6.1 9.12 0.459 12.8 13.40 0.658 21.0
Diarize Multi-Spkr 2.69 0.240 13.6 3.12 0.261 17.6 5.21 0.352 47.4 7.30 0.444 80.4
Diarize Both 2.62 0.238 17.1 3.05 0.259 21.3 5.06 0.350 50.7 6.98 0.440 82.4
Diarize All 2.74 0.259 100.0 3.01 0.277 100.0 4.25 0.338 100.0 4.89 0.395 100.0

Table 4. SRE10 results in terms of EER and DCF for several test conditions. Several strategies for diarization are also shown along with the
percentage of the data that was diarized for that particular strategy. In the presence of little to no multi-speaker conversations, performance
can be improved over the baseline with significantly reduced computation costs (compared to diarizing all test files).

In each of these test cases, we will also explore several strategies for
speaker recognition using diarization. Note that only test cuts were
made available for diarization. Enrollment files were not summed in
any of the scenarios, and were not diarized in any of the strategies.

• No diarization
• Diarize only files flagged by cross-talk detection
• Diarize only files flagged by multi-speaker detection
• Diarize files flagged by either detector
• Diarize all test files.

For all diarization experiments, an acoustic i-vector system was used
that extracts i-vectors for each second of speech and clusters them
with agglomerative hierarchical clustering, with the system trained
with NIST SRE data as described in [17]. Speaker priors restricting
the decision to one or two speakers were incorporated as well[14].

Results for all these experiments can be seen in Table 4. In
the case of the original SRE10 list, there are two interesting ob-
servations. First, the diarization of files detected to have cross-talk
yields small improvements in both metrics, while all other diariza-
tion strategies degrade performance. The second observation is that
diarizing all files hurts performance, but not as significantly as one
might expect, especially when one considers that the diarization al-
gorithm determined there was only one speaker in less than 1% of
the single speaker files. This lack of degradation is likely in part
due to the long durations of these files (often several minutes), and
so dividing the speech into several groups will still leave each with
sufficient data for an effective speaker recognition decision. For data
with less speech, the consequences could be more severe.

Once multi-speaker conversations are introduced into the test
condition, even in the case where only 5% are summed, running
no diarization becomes the worst performing system. And, when
50% or 100% of the conversations are summed, omitting diarization
becomes nearly catastrophic, increasing errors by up to 6 times. Al-
ternatively, diarizing all conversations quickly becomes the optimal
strategy, giving best or nearly best performance in all conditions that
include any summed conversations at all. However, there is a clear
trade-off that can be seen when considering the amount of the test
set that is diarized. For the rare condition, for example, diarizing
only those cuts with cross-talk or multiple speakers detected yields
very similar performance to diarizing all files, but requires only pro-
cessing ∼20% of the test set. So, in this case, a large reduction in
computation is achieved with essentially no impact on performance.
As the prevalence of summed conversations increases, the trade-off
tips more in favor of diarizing everything, as the performance gap
widens while the computational savings decrease. In practice, if
multi-speaker conversations are expected to be dominant, then di-
arizing all files appears to be the best solution. However, if multi-
speaker conversations are expected to be less common or if there are

computational concerns, then diarizing only detected files is likely
the better approach.

It is also an interesting observation that the baseline of no di-
arization is not the best performing system in any condition. This
result suggests that diarization’s role in i-vector technologies should
perhaps be reconsidered and potentially increased.

Table 4 taken in aggregate also provides some insight into a pre-
vious observation, which is that the cross-talk and multi-speaker sys-
tems struggle with each other’s tasks in Table 2. However, in that
context, it was difficult to determine whether that outcome was re-
lated to mismatch between train and test data, or whether it was re-
lated to fundamental differences in the two seemingly related tasks.
The results in Table 4 provide additional evidence that the tasks
themselves are different. In the original condition, the cross-talk de-
tector yields performance improvements despite being trained on the
less-matched data. However, in the presence of multi-speaker con-
versations, the cross-talk diarization barely outperforms the baseline
of no diarization at all, suggesting that the detector, while effective
for cross-talk in this task, is ineffective for detecting summed conver-
sations. The multi-speaker detector, on the other hand, degrades per-
formance in the absence of multi-speaker conversations, but makes
much greater improvements than the cross-talk system once sum-
ming begins. So, within this task, each detector performs better in
the task it was trained for, despite all experiments being run on the
same data. This is not conclusive, but it is strong evidence that cross-
talk detection and multi-speaker detection are indeed different tasks.

5. CONCLUSION

This work explored the task of detecting speech files with cross-talk
or multiple speakers. It was demonstrated that these tasks can be
effectively performed with i-vectors, and that proper use of the de-
tections can improve speaker recognition in a variety of conditions.
At test time, in particular, it was shown that diarization with a detec-
tor front-end improved performance in all tested conditions, includ-
ing the SRE10 evaluation data itself. It was also shown that modest
improvements could be achieved by removing cross-talk from T ma-
trix training lists, though overall this stage of the pipeline as well as
PLDA training appeared to be largely robust to the presence of cross-
talk or multi-speaker conversations, even when artificially added.
The experiments also yielded results suggesting that cross-talk de-
tection and multi-speaker conversation detection may be different
enough tasks that separate detectors are required for each. Taken in
aggregate, these results provide a compelling argument for the im-
portance of mitigating the presence of audio data that violates the
single-speaker assumption. The results also show that a combina-
tion of detection and diarization can help reduce the effects of these
unexpected speakers in i-vector applications.
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