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ABSTRACT

A novel speaker segmentation approach based on deep neural
network is proposed and investigated. This approach uses deep
speaker vectors (d-vectors) to represent speaker characteristics and
to find speaker change points. The d-vector is a kind of frame-
level speaker discriminative feature, whose discriminative training
process corresponds to the goal of discriminating a speaker change
point from a single speaker speech segment in a short time window.
Following the traditional metric-based segmentation, each analysis
window contains two sub-windows and is shifting along the audio
stream to detect speaker change points, where the speaker charac-
teristics are represented by the means of deep speaker vectors for
all frames in each window. Experimental investigations conducted
in fast speaker change scenarios show that the proposed method can
detect speaker change points more quickly and more effectively than
the commonly used segmentation methods.

Index Terms— Speaker segmentation, deep neural networks,
speaker vector

1. INTRODUCTION

Speaker segmentation is to detect speaker change points in an audio
stream and split it into homogeneous segments each with only one
speaker ideally. This technique is always used as a pre-processing
step for many speech and audio signal processing applications, such
as speaker tracking, multi-speaker detection, and speech transcrip-
tion [1].

In recent years, there are three major categories of speaker seg-
mentation methods: metric-based, model-based, and the hybrid of
them. In the metric-based methods, a distance measure needs to
be defined firstly, then two adjacent windows are shifted along the
audio stream. The distance between two analysis windows is calcu-
lated and the boundary between them is detected as a speaker change
point if the distance is larger than a predefined threshold. The com-
monly used distance measures include Bayesian Information Crite-
rion (BIC) [2], Generalized Likelihood Ratio (GLR) [3], Kullback-
Leibler Divergence (KL) [4], Support Vector Machine (SVM) [5],
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and so on. In the model-based segmentation, different speaker mod-
els trained from a training set as prior knowledge are used to de-
tect speaker change points when the models identification decision
changes from one speaker to another. Typical models are Gaussian
mixture models (GMM) [6, 7], eigenvoice-based models [8], hidden
Markov models (HMM) [9], etc. The hybrid segmentation combines
two of the previously mentioned methods, for example, ELISA [10]
is a hybrid of HMM-based method and BIC method. In this paper,
we will focus on the metric-based segmentation to solve the problem
in the fast speaker change scenarios.

One of the problems in the metric-based segmentation is how
to set up the size of analysis window. If the size is too long, there
might be more than one speaker change points in the two adjacent
windows, which will cause mistakes. Moreover, a large window size
will lead to a long time delay in speaker change detection and re-
duce the accuracy of the final result. If the size is too short, speaker
characteristics cannot be extracted accurately, so the distance cal-
culation is often inaccurate and unstable. This problem has a large
impact on the metric-based segmentation, especially in fast speaker
change scenarios. So if we could know the shortest length of speech
segment which can well distinguish two speakers, the metric-based
segmentation will be more accurate.

Most of the common-used methods in the metric-based segmen-
tation to discriminate different speakers and detect speaker change
points are based on some distance measure assumptions defined by
human prior knowledge. Most of these distance measures are based
on probabilistic models that require a certain length of speech seg-
ment to make the statistical result stable. We hope that this length
of speech segment can be shortened in fast speaker change scenar-
ios. Aiming at discriminating two speakers in a shorter time window
directly, the effective solution to extracting speaker discriminating
characteristics needs to be investigated, and the significant difference
between speaker change point and single speaker speech segment in
short time needs to be found.

Recently, deep learning offers a new idea of ‘feature learning’.
With a deep neural network, task-oriented features can be learned
layer by layer from input features. In 2011, deep neural network
(DNN) was first used to extract speaker-specific characteristics in
speaker segmentation task [11]. However, it was also based on mel-
frequency cepstral coefficients (MFCCs), which is a kind of fea-
ture elaborately designed by researchers but not designed specifi-
cally for tasks of distinguishing speakers. To extract the speaker-
discriminative characteristics more thoroughly, we will feed very
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few features to DNN, and expect that it can learn a kind of nonlin-
ear mapping function from the acoustic space to the speaker space.
Some studies have shown that it is effective in some speaker verifica-
tion tasks [12, 13]. Speaker-discriminative features would be more
significant in the new space, and it benefits to grasp speaker change
point information in speaker segmentation task.

This paper apply d-vectors to the speaker segmentation task with
the following contributions:

• We investigate the shortest length of speech segment which
can well extract speaker-discriminative feature with our
frame-level d-vector approach, and find that even 0.1 sec-
onds (10 frames) length of voice has a certain degree of
speaker-discriminative ability.

• We also apply d-vectors to the speaker segmentation task in
fast speaker change scenarios, and get more than 26% de-
crease in false alarm rate (FAR) and more than 21% decrease
in miss detection rate (MDR) compared with traditional seg-
mentation methods.

The rest of the paper is organized as follows. Section 2 makes
a description of deep speaker vector and its effective speaker-
discriminative ability in frame-level. Section 3 illustrates the whole
architecture of the proposed segmentation approach using d-vectors.
The experiments are presented in Section 4. Conclusions are drawn
in Section 5.

2. DEEP SPEAKER VECTORS

It is well-known that DNNs can learn task-oriented features from
very raw features layer by layer. This property has been used
in ASR (Automatic Speech Recognition) tasks to learn phone-
discriminative features [14] and VPR (Voiceprint Recognition) tasks
to learn speaker-discriminative features [13]. It has been shown
that a well-trained DNN can turn input features into task-oriented
features through the DNN structure layer by layer. This feature
learning is so powerful that it has defeated the MFCC feature which
was elaborately designed by researchers in some tasks.

Fig.1 presents the DNN model used for speaker-discriminative
feature learning. Following the work in [13], the input layer involves
a window of 40-dimensional filter bank energies (Fbanks). There are
4 hidden layers with each consisting of 200 units. The units of the
output layer correspond to the speakers in the training data, and the
number is 1,000 in our experiment.
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Fig. 1. The DNN model for learning speaker-discriminative features

Once the DNN has been trained successfully, the speaker-
discriminative features could be read from any hidden layer. The
closer to the output layer, the more speaker-discriminative those
features will be. So we extracted features from the last hidden layer
as the speaker representation, which is similar to the observation
in [12]. There is a necessary underlying hypothesis that the trained
DNN, having learned compact nonlinear representations of the
speakers in the development set, this may also be able to represent
unseen speakers.

Fig.2 shows the distribution of the d-vectors of two speakers on a
10-minutes conversation in the fisher corpus. We visualize d-vectors
in the speaker space with PCA dimensionality reduction to 2 dimen-
sions. It can be seen that there exists a distinct nonlinear boundary
between most d-vectors of two speakers. That is to say, deep feature
has strong discriminability.

Fig. 2. Plot of the d-vectors of two speakers on a 10-minutes conver-
sation (with PCA dimensionality reduction to 2 dimensions)

3. SEGMENTATION USING D-VECTORS

Since DNNs could learn a nonlinear mapping function from the
acoustic space to the speaker space with prior knowledge, it is pos-
sible to characterize a speaker using only its d-vectors. According
to the training process of DNN, this kind of discriminative feature
corresponds to the goal of distinguishing different speakers in the
segmentation task.

The segmentation algorithm used in our technique is summa-
rized as follows. First, Fbank features need to be extracted when an
audio stream comes after pre-processing. Second, Fbank features for
each frame need to be fed to DNN to generate the d-vector sequence
of an audio stream. We calculate the distance between two adjacent
windows of a fixed size for the d-vector sequence. D(t) the distance
between two neighboring windows at frame t, is computed as the co-
sine distance of the means for deep speaker vectors in each analysis
window. After two windows slide from left to right along the whole
d-vector sequence of the audio stream with d frames shift, a curve of
distance scores can be obtained as shown in Fig.4 (b).

There are two assumptions.
H0: if the speakers of two neighboring windows are identical,

the distance score of means for d-vectors between the two analysis
windows is large.

H1: if the speakers of two neighboring windows are different,
the distance score of means for d-vectors between the two analysis
windows is small.

Based on the above assumptions, if the distance score between
two windows is smaller, it is more highly possible that there is a
speaker change point across the boundary between these two win-
dows. However, the problem is that how small the distance score
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should be when there is a real speaker change point. So, in the last
step, we detect peaks from the distance score curve with a threshold
to find speaker change points. The whole segmentation architecture
is shown in Fig.3.

Fig. 3. The d-vector segmentation architecture

Fig.4 shows the differences of distance curves between a tradi-
tional segmentation method (BIC-based distance measure selected)
and the d-vector segmentation approach. From the distance score
curves, we can see that the d-vector segmentation is more precise
than the BIC segmentation, and it makes a more detailed descrip-
tion of the trend of changes in score curve. Moreover, with the d-
vector segmentation approach, the distance scores change more sig-
nificantly when a real speaker change occurs, it is more beneficial
for peaks detection and choosing a suitable threshold to detect real
speaker change point.

4. EXPERIMENTS

4.1. Database and experimental set-up

We randomly chose 1,000 speakers (with gender balanced; and each
speaking segment length more than 10 minutes) from the fisher cor-
pus for deep neural network training. Data used for segmentation
experiments were also selected from the fisher corpus. It contains
100 fast switching telephone conversations, and each conversation
has about 10 minutes and 100-200 change points (totally 16 hours
and; 20,180 change points). The histogram of the speech segment
durations based on the transcriptions is shown in Fig.5.

Feature extraction was performed on a 20ms frame width with
10ms shift. The pre-emphasis coefficient was 0.97 and the hamming
windowing was applied to each frame. An energy-based Voice Ac-
tivity Detection (VAD) was performed to remove the silence regions
of each speech signal. In the DNN training step, the 40-dimensional
Fbanks were extracted with speaker target corresponding to the unit
of the output layer. In the segmentation step, the same size Fbanks
were extracted and fed to the deep neural network to extract deep
speaker vectors. Means of deep speaker vectors were calculated in
each window to generate the speaker characteristics vectors.

4.2. Differentiated performance between the traditional dis-
tance measures and the d-vector approach

The first experiment investigated the performance of the d-vector dif-
ferentiated performance, and compared it with the three traditional

(a) BIC: change points often detected around the local
maximum values

(b) d-vector: change points often detected around the lo-
cal minimum values

Fig. 4. Window distance score curves of d-vector and BIC segmen-
tation (the green segment represents real speaker change segment)

Fig. 5. Histogram of the speech segment durations based on the
transcriptions

distance measures. In this experiment, we only selected 20 speak-
ers’ speech from the fisher corpus (8 males and 12 females). Five
types of short-length segments (from 0.1 to 2 seconds per person)
were extracted from each person’s voice with each length of seg-
ments containing 20 cases. In all length of segments, we computed
the distance scores of same speakers and different speakers on any 2
test cases, and the equal error rate (EER) was used as a relative stan-
dard, the same as in speaker verification task. Experimental set-up
was the same as defined in section 4.1. The distinguishing abilities
of different distance measures and d-vector approach are shown in
Table 1. We cannot calculate the BIC distance in 0.1s speech length
because we get singular matrix if feature dimensions smaller than
number of frames in an analysis window.

The experimental result shows that traditional distance measures
can only work in a certain speech length, while the d-vector has a
great speaker-discriminative ability for short speech segment length
even as short as 0.1 seconds (10 frames). As a result, d-vector ap-
proach is more suitable to grasp speaker-discriminative characteris-
tics in a very short time window, and may be beneficial for segmen-
tation task in fast speaker change scenarios.
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Table 1. Performances in EER for different distance measures
Speech Length (s) BIC GLR KL2 d-vector

0.10 - 49.39% 48.45% 19.61%
0.50 38.51% 39.52% 44.18% 10.44%
1.00 26.86% 27.47% 38.78% 8.16%
1.50 20.00% 21.02% 36.47% 6.94%
2.00 15.71% 15.97% 34.74% 5.00%

4.3. Analysis window size selection

In this experiment, we selected 10 conversations each of which con-
tains around 150 speaker change points to examine the effect of win-
dow size in our d-vector segmentation approach. Because of the
effective distinguishing ability of deep speaker vector, and the fast
speaker change scenarios, we investigated multiple analysis window
sizes (ranging from 0.01s to 1s) with 0.01s window shift.

FAR and MDR are used to evaluate the performance of the seg-
mentation algorithm, which is defined as

FAR = FA/(ASC + FA)

MDR = MD/ASC

where FA denotes the number of false alarms, MD denotes the
number of miss detections, and ASC denotes the actual number
of speaker change points. We gave a 0.3s tolerance between the
reference speaker change point and its nearest putative change point.

As shown in Fig.6, we took averages of two types of error
rate for total 10 conversations. We can conclude that 0.05 to 0.1
seconds were the most effective window sizes for our fast speaker
change segmentation task. A too short analysis window cannot ex-
tract enough speaker distinguishing features, and a too long analysis
window may contain more than one speaker change points in two
adjacent windows. The problem has been introduced in the first part
of this paper and this is also a validation experiment from the side.

Fig. 6. The effect of window size with d-vector segmentation

4.4. The superior performance of d-vector segmentation

In this experiment, three traditional methods (BIC, GLR, KL2) were
chosen as the baseline systems. We compared our proposed d-vector
segmentation approach with them in all 16-hours conversations. The
0.1-seconds window size that achieves a considerable performance
in section 4.3 was applied.

Due to the accuracy of speakers’ distinguishing characteristics
and the stability of distance calculation in a short time window, the
proposed d-vector segmentation approach obtained a more substan-
tial performance, which achieved a more than 26% decrease in FAR

Table 2. Performance comparison among the d-vector approach and
traditional methods

Methods FAR MDR
BIC 52.92% 51.35%
GLR 52.07% 54.01%
KL2 51.58% 60.69%

d-vector 39.00% 40.15%

and a more than 21% decrease in MDR compared with the tradi-
tional ones. The DET curves for two types of error rates between
traditional methods and the d-vector approach are shown in Fig.7.

However, our proposed approach in Table 2 cannot reach the
best performance as in Fig.6. This is mainly because the threshold
is conversation dependent and it is hard to find a global optimum
threshold suitable for all given conversations.

Fig. 7. DET curves comparison between three traditional approaches
and d-vector based segmentation

5. CONCLUSION

In this paper, we propose a novel speaker segmentation approach
based on deep speaker vectors. To deal with the problem of dis-
tinguishing speaker change points and single speaker speech seg-
ment in a very short time window, the d-vector approach has the
following advantages compared with traditional distance measures:
1) Speaker representations in traditional distance measures are ‘de-
scriptive’, and they are represented by constructing probability dis-
tributions. The d-vector is ‘discriminative’, which represents the
speaker by removing speaker irrelevant variance, this matches the
discriminative goal in speaker segmentation task directly. 2) Tradi-
tional distance measures require a certain length of voice to make the
statistical result stable. However, the d-vector is a ‘local’ description
which can be inferred from ‘each’ frame. This means that d-vector is
more superior with short time window tasks. The experiment shows
that with our d-vector approach, speaker characteristics can be ex-
tracted in only 0.1 seconds (10 frames) length of voice to distinguish
different speakers, and in the case of fast speaker change scenarios,
it got more than 26% decrease in FAR and more than 21% decrease
in MDR compared with the traditional segmentation methods.

Future work will include improving the current cosine distance
measure between d-vectors, as well as trying other transformations
for the raw distance score. Another plan is to investigate the auto-
matic threshold selection method to reduce the impact on conversa-
tion dependency.
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