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Abstract 

In this paper we report our work on the recently collected text 

dependent speaker recognition dataset named RedDots, with a 

focus on the common passphrase condition. We first 

investigate an out-of-the-box approach. We then report several 

strategies to train on RedDots itself using up to 40 speakers for 

training. The GMM-NAP framework is used as a baseline. We 

report the following novelties: First, we demonstrate the use of 

bagging for improved accuracy. Second, we estimate the EER 

of a passphrase using metadata only. Third, the estimated 

EERs are used for improved score normalization. Finally we 

report an analysis of system sensitivity to the duration between 

enrollment and testing (template aging). 

Index Terms: RedDots, text dependent speaker recognition, 

bagging, pass-phrase quality estimation, template aging 

1. Introduction 

This paper describes the work done at IBM within the  

framework of the RedDots text-dependent speaker recognition 

challenge for Interspeech 2016. The RedDots data collection is 

described in [1]. The RedDots challenge (described in [2]) 

addresses multiple authentication conditions. In this paper we 

focus on a single authentication condition (part 1 imposter-

correct). This condition corresponds to the standard common 

passphrase condition in which both target and imposter 

authentication trials contain the same passphrase as used for 

enrollment. We focus on this condition as it is the most 

appropriate for multi-modal person authentication [3], in 

which liveness detection can be addressed using other means 

such as audiovisual synchrony detection and face recognition 

[4]. 

According to the RedDots part 1 protocol, scores from 10 

different common passphrases are pooled. This is  contrary to 

our previous works on the Wells Fargo (WF) dataset [5] were 

EER is computed independently for each passphrase. This 

raises the need of passphrase-dependent score normalization 

(or calibration). Furthermore, the RedDots challenge does not 

provide any in-domain development data (largely due to its 

small size). Instead, the RedDots protocol requires one to use 

an out-of-the-box system and to use the RedDots data for 

evaluation only. 

We address this discrepancy between protocols by 

conducting two types of analysis.  First, we present results 

following the RedDots protocol using a text-independent 

system. Second, we use cross-validation to train and evaluate 

on RedDots. 

Finally, the RedDots data provides the opportunity to 

investigate  the short-to-medium term template aging effect in 

the framework of text-dependent speaker recognition. In a  

 

nutshell,  the question is whether the accuracies obtained when 

enrollment and verification data are collected within a short 

time span degrade when the time span gets longer, and to what 

extent. We report a preliminary investigation on this subject. 

The remainder of this paper is organized as follows: 

Section 2 describes the datasets and setup. Section 3 describes 

our GMM-NAP-based baseline system. Section 4 introduced 

our novel bagging approach to improve the robustness of 

training a speaker recognition system on a small devset. 

Section 5 presents our work on RedDots. Section 6 presents  

our analysis on template aging. Finally, Section 7 concludes. 

2. Datasets and setup 

2.1. The RedDots Interspeech-2016 challenge 

The RedDots project was initiated, with collaboration from 

multiple sites, as a follow‐up to a special session during 

Interspeech 2014. It was set out to collect speech data through 

mobile crowd‐sourcing, with the benefit of potentially wider 

population and greater diversity. The challenge dataset 

consists of 62 speakers  (49 male, 13 female) from 21 

countries, with a total of 573 complete sessions (473 male and 

99 female).  

The Part1 imposter-correct condition consists of 10 

common passphrases, totaling in 3242/118166 male 

target/imposter trials and 634/4438 female target/imposter 

trials. 

2.2. IBM datasets 

The IBM datasets were collected internally at IBM as part of a 

multi-modal data collection effort described in detail in [3]. 

The data was collected with smartphones and tablets. Subjects 

were recorded by smartphones and tablets held at arm-length. 

IBM-dev dataset was collected using iPad-2 and iPhone-4 

with 2 recording sessions per speaker and per device. For most 

of the speakers single recordings sessions from Galaxy-2 and 

Xoom-2 were also recorded. The recording condition was 

highly clean. The dataset consists of 100 users (mostly males). 

Each recording session contains several utterances including 3 

repetitions of the common passphrase my voice is my 

password. For text independent training each session contains 

a 75-words text which is mostly fixed (except for name, phone 

number and zip-code).  

IBM-eval contains 32 speakers (20 males) recorded  by 

iPad-2 and iPhone-5. Three sessions were recorded per 

speaker for each device, the first two in clean conditions and 

the third in a noisy cafeteria.  There are ~500  target trials and 

~25000 impostor trials per device (no cross device trials). 

2.3. Wells-Fargo (WF) dataset 
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The WF corpus consists of 750 speakers, from which 200 are 

assigned to a devset. Each speaker has 2 landline sessions and 

2 cellular sessions. The data collection was accomplished over 

a period of 4 weeks.  

  We use the WF devset for training a contrastive text-

independent system. We use the following utterances:  four 

fixed 10-digit phone numbers,  a 10-digit string containing the 

words zero-to-nine, and two short fixed sentences. 

2.4. Assessment strategy 

Results on RedDots (EER, minDCF) may be assessed in 

different ways. Consider for instance the gender issue. One 

alternative is to assess results independently for each gender 

and possibly also to average the EERs (or minDCFs) obtained 

for each gender in order to obtain a single gender independent 

assessment. Alternatively, scores may be pooled and then 

assessed. In such case, the lack of calibration before pooling 

may be an issue. 

The same issue applies to passphrase dependency. One can 

either pool all scores and then assess performance, or first 

assess performance and then average the performance 

measures. The choice of the best assessment method is highly 

dependent on the application. Furthermore, large accuracy 

differences between the two assessment methods indicate a 

need for passphrase dependent score normalization (or 

calibration). 

The assessment issue is mostly challenging when cross 

validation is  used, because pooling scores from different non-

calibrated systems may result in degraded performance. In this 

case we argue that the proper assessment method is to average 

the individual error measures for the different folds in the 

cross validation and not pool the scores from the different 

folds (as cross validation is just a tool for assessment and in 

deployment a single system is used). 

3. Baseline System 

Our baseline system is based on the GMM-NAP framework. 

In the GMM-NAP framework a GMM is adapted for each 

session from a UBM using MAP-adaptation. A projection is 

estimated from the development set and is used to compensate 

intra-speaker intersession variability (such as channel 

variability). The GMM-NAP framework was chosen as it is 

possible to reasonably train it using tens of speakers [12-14], 

contrary to the i-vector PLDA [15] framework which requires 

much more data for training [16]. 

3.1.  Front-end 

The front-end is based on PNCC-inspired features [7]. First 

audio is down-sampled (in case of 16KHz audio) to 8KHz. 

Then, an energy based voice activity detector is used to locate 

and remove non-speech frames. The final feature set consists 

of 19 Cepstral coefficients augmented by 19 delta and 19 

double delta coefficients extracted every 10ms using a 25ms 

window. Feature warping is applied with a 300 frame window 

before computing the delta and double delta features. 

3.2. GMM supervector extraction 

A Universal Background Model (UBM) with diagonal 

covariance matrices is trained on the development set and is 

used for extracting the supervectors. The means of the GMMs 

are stacked into a supervector after normalization with the 

corresponding standard deviations of the UBM and 

multiplication by the square root of the corresponding weight 

from the UBM: 

  FUBM Ix   2/12/1                            (1) 

where µ stands for the concatenated GMM means, λUBM stands 

for a diagonal matrix with the UBM weights on the diagonal, 

∑ is a block diagonal matrix with covariance matrices from the 

UBM on its diagonal, F is the feature vector dimension,   is 

the Kronecker product, and IF is the identity matrix of rank F. 

We center all supervectors using the mean of the development 

set. 

3.3. NAP estimation 

A low rank projection P is estimated as follows. First, we 

remove from each supervector in the development its 

corresponding speaker-dependent supervector mean. The 

resulting supervectors  are named nuisance supervectors. We 

compute the covariance matrix of the nuisance supervectors 

and apply PCA to find a basis to the nuisance space. 

Projection P is created by stacking the top k eigenvectors as 

columns in matrix V: 

 tVVIP  .                                   (2) 

3.4. NAP compensation 

Every supervector x is compensated by applying projection P: 

xx P~  .                                            (3) 

3.5. Scoring and score normalization 

Scoring is performed using the Geometric mean kernel [8] 

applied on the compensated enrollment and test supervectors:  
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where E and T stand for the enrollment and test sessions,  
Ex~

and 
Tx~ are the corresponding compensated supervectors, and  

λE and λT are the corresponding diagonal matrices with the 

GMM weights on the diagonal. 

Finally, We apply ZT-score normalization [9] using the 

development data. 

4. Bagging 

In speaker recognition the parameters of the recognition model 

(UBM, NAP and score-norm statistics) are usually point-

estimated from a devset, and the estimation error is neglected. 

When the devset is small, model estimation error is high which 

causes performance degradation. A possible remedy for this 

problem would be to marginalize over the estimated 

distribution of the model parameters θ: 

       


dpxpxp  loglog                   (5) 

A practical approximation would be to sample N models from 

p(θ) and compute the log of the average likelihood: 
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i

iN
xpxp 1loglog .                    (6) 

However, Eq. (6) requires scores to be calibrated into 

likelihoods. Instead,  the log-likelihoods can be averaged as in 

Eq. (7): 

   
i

iN
xpxp loglog 1 .                     (7) 

Note that contrary to the approximation in Eq. (6), model-

dependent score biases (bi) will not affect EER if compensated 

using calibration (see Eq. (8)). 
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The methods we use to sample from the model parameter 

distribution are to either sample subsets from the devset and 

train the system on each such subset, or to train models with 

slightly different GMM orders. The general framework is 

named bagging [10]. 

We evaluate the bagging approach on the following setup. 

We train the baseline system described in Section 3 system on 

IBM-dev and test on IBM-eval using the utterances of the 

common passphrase my voice is my password. We sample the 

devset 8 times, each time removing 10 different speakers from 

the devset of 100 speakers resulting in 8 devsets of 90 

speakers. The bagged scores are obtained by averaging the 

scores produced by the 8 models (Eq. 7). Results (using 128 

Gaussians, and a NAP dimension of 50) are reported in Table 

1. The experiments indicate an average error reduction of 13% 

relative, and 11% when DNN-based denoising [11] is applied 

as a pre-processing. In the next section we demonstrate the use 

of bagging for the RedDots data. 

5. RedDots experiments 

5.1. Out-of-the-box text-independent system 

The baseline system described in Section 3 was trained 

gender-independently on two different text-independent 

datasets (WF and IBM-dev), with 512 Gaussians, and a NAP 

dimension of 50. The results in Table 2 indicate that channel 

compensation (NAP) trained on a text-independent devset is 

helpful, except for the last row which might be due to the 

small number of females in the devset (12). Furthermore, as 

the number of females in RedDots (13 totaling in 99 sessions) 

is very small we do not report any further results on females. 

The rest of our results in this subsection are produced using 

IBM-dev for development as it gives better results than WF. 

Next, we explore the use of bagging.  We use a similar 

setup as described in section 4 (8 samples of the devset 

resulting in 8 models). The results which are denoted by 

'Pooling' are reported in Table 3. 

We next explore phrase-dependent (PD) score 

normalization. First, we evaluate the average EER per 

passphrase (contrary to pooling all scores and calculating a 

single EER). The results denoted by 'EERs averaged' are 

reported in Table 3.  

For some applications using EER averaging for evaluation 

is appropriate, for instance if a single common passphrase is 

used in deployment. However, for other applications a single 

Table 1. EER (in %) for the baseline and the bagging based 

systems trained on IBM-dev and tested on IBM-eval. Results 

are for pooled male and female trials 

 Condition 

(dev-eval) 

Baseline 

EER 

[%] 

Bagging 

EER 

[%] 

Relative 

improv.[%] 

Raw audio 

 clean-clean 1.07 1.01 6 

iPad clean-noisy 5.13 4.54 12 

 all-all 4.66 4.32 7 

 clean-clean 1.91 1.58 17 

iPhone clean-noisy 2.82 2.27 20 

 all-all 2.98 2.41 19 

DNN-denoised audio 

 clean-clean 0.53 0.46 13  

iPad clean-noisy 4.86 4.54  7 

 all-all 4.22 3.95   6 

 clean-clean 1.27 1.05   17 

iPhone clean-noisy 2.72 2.27  16 

 all-all 2.69 2.38  11 

 

Table 2. EERs (in %) on RedDots. Scores from 10 

common passphrases are pooled. 

Devset Gender 
w/o NAP  

EER [%] 

NAP 

EER [%] 

Relative 

improv.[%] 

WF 
male 5.9 3.6  39 

female 8.4 7.7 8 

IBM-dev 
male 3.9 3.4 13 

female 6.8 7.4 -9 

 

Table 3. EERs (in %) on RedDots-males trained on 

IBM-dev text-independent. PB stands for Phrase 

dependent score Bias regressed from phrase length. 

Method Eval method EER [%] Relative improv.[%] 

baseline 

Pooling 3.3 - 

EERs averaged 3.0 9 

PB + pooling 3.2 3 

bagging 

Pooling 3.0 9 

EERs averaged 2.6 21 

PB + pooling 2.5 24 

 

Table 4. EERs (in %) on RedDots-males trained using 

cross-validation on RedDots. (PI/PD=passphrase 

independent/dependent training). CV-EA stands for 

cross-validation EER averaging. 

 Cross Per partition  Devset size (# speakers) 

Method Valid. Eval method 10 20 30 40 

Baseline 

PD 

Pooling Pooling 7.1 3.5 2.8 2.6 

Pooling EERs avg 7.1 3.3 2.5 2.2 

CV-EA Pooling 6.6 3.5 2.8 2.3 

CV-EA EERs avg 6.1 3.1 2.4 1.7 

Baseline 

PI 

Pooling Pooling 4.0 3.3 3.1 3.0 

Pooling EERs avg 3.5 2.9 2.7 2.6 

CV-EA Pooling 3.8 3.2 3.1 2.7 

CV-EA EERs avg 3.2 2.8 2.6 2.0 

Bagging 

PD  

Pooling Pooling 6.0 3.0 2.4 2.3 

Pooling EERs avg 5.9 2.8 2.2 1.9 

CV-EA Pooling 5.7 2.9 2.4 2.0 

CV-EA EERs avg 4.9 2.6 2.1 1.4 
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threshold must be automatically set for all passphrases. A 

related problem is estimating a-priori the EER of a passphrase. 

We propose to regress the EER as a function of the length (in 

characters) of the passphrase. For the baseline system, a 

correlation of 0.8 was found (using the test data, i.e., a 

cheating experiment) between the inverse of the length of the 

passphrase and its.  

The next step is to use the regressed EER for score 

normalization. As our goal is to optimize EER, we aim at 

independently normalizing the scores of each passphrase such 

that a single threshold would give the EER operating point for 

all pass-phrases. We assume that after phrase-independent ZT-

score normalization the imposter scores for each passphrase 

distribute normally standard. We can therefore subtract a 

phrase dependent bias from the scores of a given passphrase 

such that the expected false-acceptance is set to the expected 

EER (regressed from the phrase length). The results are 

reported in Table 3, and denoted by 'PB + pooling' (PB stands 

for Phrase-dependent Bias). 

5.2. Cross validation experiments 

Experiments were run on RedDots (males only) using cross 

validation. For each specified number of development 

speakers (10, 20, 30 and 40), we create 30 different partitions 

of RedDots into a devset and an evaluation set (speakers in the 

two sets are disjoint).  

Three types of setups were evaluated. The first one is 

running the baseline GMM-NAP system (with a GMM order 

of 128) in a passphrase-dependent manner (building the whole 

system from scratch starting from the UBM, using only 

utterances from the evaluated passphrase). The second setup is 

training a single phrase-independent (PI) system (with a GMM 

order of 512). The third setup is similar to the first one (PD) 

but using the bagging method. In order to best exploit the 

small amounts of data, bagging was done by training 8 

different systems when the difference is the number of 

Gaussians: 128+8k with k={-4,...,3}. 

For each experiment, the scores from the 30 different 

partitions may be either pooled (denoted by 'Pooling'), or 

individual EERs per partition (noisy but unbiased) may be 

computed and averaged (denoted by 'CV-EA' (cross-validation 

EER averaging)). We argue that the latter method (averaging 

EERs) is more appropriate as in deployment one will not need 

to pool scores from different folds. The results are reported in 

Table 4. 

6. Aging templates analysis 

One of the concerns in speaker recognition is whether the 

performance assessed on evaluation data that has been 

recorded within a short period of time would degrade when 

deployed due to template aging (when the duration between 

enrollment and testing is long). The concern is particularly 

relevant to text-dependent speaker recognition where datasets 

like WF, RSR-2015 and IBM dataset have been recorded 

within a relatively short period. 

  The template aging effect is analyzed by partitioning the 

target-trials according to the duration between enrollment and 

verification. For each partition, the EER and average score are 

computed and plotted as a function of the mean duration 

(Figure 1). A regression analysis indicates that EER is 

increased on average by 0.01% per day (R-squared=0.43), and  

 

 

Figure 1: Template aging effect on RedDots using the baseline 

text-independent system trained on IBM-dev with passphrase 

EER averaging. 

 

that target trial scores decrease on average by 0.02 per day (R-

squared=0.75). 

7. Conclusions 

In this work we have investigated several alternatives for 

building a speaker recognition system for the RedDots 

challenge. We addressed the part 1 imposter-correct condition 

(10 common passphrases evaluated in the standard text-

dependent setup). We constrained ourselves to a GMM-NAP 

framework and compared an out-of-the-box text-independent 

system to a system trained on RedDots itself using cross-

validation. The main conclusion we draw is that RedDots-

based training is superior to the out-of-box system if more 

than 20 speakers are available for training.  

We have several contributions in this work. First, we 

propose to use bagging of multiple systems either trained on 

slightly different datasets or trained using a slightly different 

GMM order. We obtained an average relative error reduction 

of 15% using this approach. 

Second, we highlight the problem of pooling scores from 

different passphrases (and from different cross-validation 

patritions) and propose to average EERs instead of pooling 

scores whenever it is reasonable in view of the application (we 

argue that this is the case for cross-validation).  

Third, we propose to anticipate the EER of a passphrase 

using the textual representation of the passphrase. A first step 

of regressing the EER as a function of the inverse of the length 

(in characters) results in a correlation of 0.8. We use the 

regression to obtain modest error reductions by doing  phrase-

dependent score normalization. 

Finally, we report an analysis of the template aging effect 

and conclude that EER increases by 0.01% per aging day. 
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