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ABSTRACT 

 
We introduce a novel approach of addressing inter-dataset 

variability in the context of speaker recognition in a mismatched 

condition under the JHU-2013 domain adaptation challenge (DAC) 

framework. Previously, we took a subspace removal approach for 

inter-dataset variability compensation (IDVC) of within speaker 

variability. In this work we substitute subspace removal with 

incorporation of the variability into the Probabilistic Linear 

Discriminant Analysis (PLDA) model. We do that by introducing a 

novel optimality criterion which is minimizing the expected square 

error in estimation of  the log-likelihood ratio of target trials when 

dataset-dependent PLDA models are replaced by a dataset 

independent PLDA model. The result we obtain is a correction 

term for the commonly estimated within speaker variability matrix. 

The correction term represents the normalized inter-dataset 

variability of the within speaker variability matrices. The proposed 

method outperforms the extended IDVC method on the DAC. 
 

Index Terms— robust speaker recognition, inter dataset 

variability compensation, domain adaptation challenge, inter 

dataset variability modeling, 

 

1. INTRODUCTION 

 
Current state-of-the-art systems in text independent speaker 

recognition obtain very low error rates [1] when trained on a large 

dataset with thousands of multi-session speakers as long as the 

development data matches the evaluation data. However, when 

development and evaluation data are mismatched, accuracy 

degrades dramatically [2]. 

The cross domain speaker recognition task was addressed in 

the JHU 2013 speaker recognition workshop [3] in the framework 

of the Domain Adaptation Challenges (DAC) [2]. The challenge 

was motivated by preliminary experiments that showed that a state-

of-the-art i-vector PLDA system [4] built on the Switchboard [5] 

corpus had a 3 times larger equal error rate (EER) on the NIST 

2010 SRE (condition 5) [6], compared to a system built on a subset 

of the MIXER corpus (NIST 2004-2008 SREs) [5] with a 

comparable size.  

Recently, interest in cross domain speaker recognition 

increased significantly, and it is fundamental in the NIST 2016 

speaker recognition evaluation [7]. 

Previous works addressing domain mismatch in speaker 

recognition may be categorized into three main approaches. The 

first approach is domain adaptation using some amount of 

adaptation data from the target domain, either labeled or unlabeled 

[8-14]. The second approach is improving domain robustness using 

the source domain data only (without the use of any target data) 

[15-19]. The third approach is retraining the system on a limited 

amount of labeled target data [10, 20-21].  

In this paper we follow the second approach in which no target 

data is used, and therefore the focus is on improving the robustness 

of the system trained on the source data. We propose an 

improvement of our inter-dataset variability compensation (IDVC) 

method firstly introduced in [16] and extended in [17].  

The basic IDVC method [16] aims at explicitly compensating  

dataset shift in the i-vector space as a pre-processing cleanup step, 

and was shown in [16, 11-12, 19] to be very effective on the DAC. 

Recently, it was also found effective by 7 participating sites for the 

NIST 2016 SRE [23-24]. The extended version introduced in [17] 

further improves performance on the DAC by compensating not 

only additive shifts in the i-vector space but also inter-dataset 

differences in within and between (across) speaker variability. 

In this paper we withdraw the subspace removal technique for 

removing inter-dataset differences in within speaker variability. 

Instead,  we optimize the PLDA model to account for inter-dataset 

variability. We present empirical results which indicate that our 

proposed method outperforms the extended IDVC method, and 

obtains the best published results on the DAC when no adaptation 

data is used. Furthermore, the results are competitive to other 

published works on the DAC even though they do use unlabeled 

adaptation data. 

The rest of the paper is organized as follows: Section 2 

provides an overview of the extended IDVC method. Section 3 

describes our proposed method. Section 4 reports the experiments 

and results. Finally, Section 5 concludes. 

 

2. EXTENDED INTER DATASET VARIABILITY 

COMPENSATION 

 
IDVC aims at estimating and removing dataset mismatch in the i-

vector domain. This is done by first partitioning the development 

data into subsets corresponding to different sources, and then 

training a PLDA model for each subset. The variability in the 

PLDA hyper-parameters across the subsets is analyzed and a low-

dimensional subspace in the i-vector space accounting for most of 

that variability is pursued. The estimated low-subspace is then 

removed from all i-vectors as a pre-processing step before i-vector 

length normalization and whitening. The method is described in 

detail in the following subsections. 

 

2.1. Two covariance model 

 

The PLDA framework assumes that the i-vectors distribute 

according to Equation (1): 

 

                            cs                                          (1) 

 

where ϕ denotes an i-vector, s denotes a speaker component, c 

denotes a channel (or within-speaker variability) component, and µ 

denotes the center of the i-vector space. Components s and c are 
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assumed to distribute normally with zero mean and covariance 

matrices B (between speaker) and W (within speaker) respectively. 

The PLDA model is thus parameterized by {µ, B, W} and the 

goal of any PLDA training or adaptation algorithm is to estimate 

(or adapt) these hyper-parameters. 

 

2.2. The extended IDVC method 

 

We hypothesize that some directions in the i-vector space are more 

sensitive to dataset mismatch than other directions. In order to 

make a PLDA system robust to dataset mismatch, we aim at 

finding and removing a low-dimensional subspace (from the i-

vector space) which is sensitive to dataset mismatch. 

The mismatch-sensitive subspace can be estimated assuming 

that the development dataset is heterogeneous and we are able to 

partition it into a set of homogenous subsets. The homogenous 

subsets of the development dataset may be used to estimate a 

PLDA model for each subset independently, and the mismatch-

sensitive subspace may be estimated from the collection of PLDA 

models.  

Given a set of PLDA models parameterized by {µi, Bi, Wi}  a 

subspace is estimated for each type of hyper-parameter 

independently. For µ, the subspace is obtained by applying 

Principal Component Analysis (PCA) to the set of vectors {µi}. 

For W and B, corresponding subspaces are obtained using the 

following procedure (shown for W): 

 

1. Whiten the i-vector space with respect to the average 

within speaker variability covariance matrix  
 

• Calculate the square root of -1W  denoted by R 

• Define: RRWŴ ii   

 

2. Compute Ω= 
 

3. Find the k top eigenvectors of Ω: v1,…vk  

4. Span the required subspace using R-1v1,…R-1vk 

 

More details can be found in [17]. 

 

3.  INTER DATASET VARIABILITY MODELING 

(IDVM)  

 
The main drawback we find in the extended IDVC scheme is that 

the subspace we remove may contain discriminative speaker 

information. Furthermore, the choice of the subspace rank has no 

theoretic basis and is tuned in practice on a tuning dataset.  

For the µ hyper-parameter, experiments reported in [17] 

indicate that the problem is not very significant and setting the 

PCA subspace rank to the maximal possible rank (n-1 where n is 

the number of subsets in the development dataset) seems to be 

optimal for the case of high dataset mismatch, and with a minimal 

degradation for the case of minimal dataset mismatch. 

For the B hyper-parameter, we hypothesis that it is relatively 

insensitive to (DAC-like) dataset mismatch. We validate this 

hypothesis on the DAC data (Section 4). 

The main contribution of this work is a novel modeling of the 

inter-dataset variability of the W hyper-parameter. Given subsets 

of the developments set with estimated within speaker variability 

covariance matrices W1,...,Wn, we aim at estimating a value (we 

denote by Λ) for the W hyper-parameter of the PLDA model which 

minimizes the expected inaccuracy of the estimated log-likelihood 

ratio (LLR) which is due to using Λ instead of Wi. We describe in 

detail our approach in the following subsections. 

 

3.1. Simplified PLDA scoring 

 

Given i-vectors x and y, we want to calculate the LLR with respect 

to the null hypothesis that x and y originate from different 

speakers.  

PLDA gives a closed form expression for the LLR. Assuming 

that the i-vector space is centered (µ=0), the LLR can be calculated 

as follows [4]: 
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 
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where T is the total covariance matrix (T=B+W). As W is dataset 

dependent (but B is not according to our analysis), T, P and Q are 

also dataset dependent. We can therefore (for the sake of the 

analysis only) set B to be equal to the identity matrix I (by 

whitening the i-vector space with respect to B). We obtain: 
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For the sake of optimization of Λ only (and not for actual scoring), 

we approximate Eq. (4) as follows: 
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Note that we obtain PIQ  . The LLR (Eq. (2)) can be therefore 

approximated as: 
 

           constW 1T

2

1   x-yx-yyyxxllr TT .          (6) 

 

Let  δ=x-y. For dataset i, we can estimate the LLR either using a 

dataset dependent (DD) matrix Wi (we denote this LLR with llrDD) 

or using a dataset independent (DI) matrix Λ (we denote this LLR 

with llrDI): 

 

  constW,,
-1

2

1   i

tT

DD yyxxiyxllr T                (7) 

 

  const,, -1

2

1   tT

DI yyxxiyxllr T                (8) 

 

The difference between DD-LLR and DI-LLR is the LLR 

estimation error. We demote it by  ,,e i : 

 

    1-1

iW,,e  ti .                     (9) 

 

Finally, the loss function L is defines as the square of the LLR 

estimation error: 
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    ,,,,L 2 iei                            (10) 

 

We are interested in minimizing the mean over different datasets of 

the expected loss of target trials: 

 

   
 i

n
i,,LE minargˆ 1 

                    (11) 

 

We show in the Appendix that the solution to Eq. (11) is: 
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The optimal Λ is therefore equal to the average within speaker 

covariance matrix plus a term that represents the variability of the 

within speaker covariance matrix across different datasets, 

normalized by the average within speaker covariance matrix. 
 

4. EXPERIMENTS AND RESULTS  
 

4.1. Datasets 

 

We use the JHU-2013 speaker recognition workshop DAC setup 

which can be downloaded from [3]. The source development 

dataset (Switchboard) consists of all telephone calls taken from 

Switchboard-I and Switchboard-II. The dataset consists of 3114 

speakers and 33039 sessions. The target development dataset 

(MIXER) consists of a subset of telephone calls taken from SREs 

2004-2008. The dataset consists of 3790 speakers and 36470 

sessions. The NIST 2010  SRE condition 5 core extended trial list 

is used for evaluation. The dataset consists of 7169 target trials and 

408956 impostor trials. We report results by pooling male and 

female trials. Three error measures are used: EER, DCF (08') and 

DCF (10') as specified in [6]. 

For the use of the IDVC and the IDVM methods, Switchboard 

is partitioned into 12 gender dependent subsets, based on 6 

different releases (2 cellular releases, and 4 landline). More details 

can be found in  [16]. 

 

4.2. Baseline system 

 

The i-vectors we use are those supplied by the DAC organizers and 

may be downloaded from [2]. A detailed description of their 

creation can be found in [10]. We center the i-vectors using the 

Switchboard development data. Prior to PLDA modeling, the 

dimensionality of the i-vectors is reduced using GI-LDA to 400. 

The next steps are within class covariance normalization (WCCN) 

[3] and length normalization [3]. Gender-dependent (GD) PLDA is 

then applied with full rank between and within covariance 

matrices. For the sake of flexibility in our experiments, we do not 

use EM to estimate the PLDA model. Instead we use Maximum 

Likelihood (ML) followed by a cleanup step with removes 

expected estimation biases and smoothing of the off-diagonal 

covariance elements with the diagonal elements. We observed a 

slight improvement in the baseline due to this approach compared 

to the standard EM training we used in [17]. Finally, we compute a 

single bias term (using Switchboard) for the female scores in order 

to calibrate them to the male scores. 

 

4.3. Between speaker variability analysis 

 

Table 1. Results for pooled male and female trials without IDVC.  

Devset EER [%] DCF-08 DCF-10 

Switchboard 8.16 0.323 0.683 

Mixer 2.23 0.111 0.378 

Mixer (Switchboard for  B) 2.28 0.118  0.377 

 

Table 2. Results for pooled male and female trials with IDVC 

compared to the proposed method 

Configuration EER [%] DCF-08 DCF-10 

IDVC: μ only 3.68 0.184 0.531 

IDVC: µ , W (rank=100) 3.03 0.146 0.477 

IDVM 2.82  0.141 0.467 

 

Table 3. Results comparing the proposed method (IDVM) to 

related published works, all using the same i-vectors provided 

within the DAC framework. The first 5 systems do not use 

unlabeled target data for training, while the last 3 system do. 

System 

Target 

data 

used? 

EER [%] 

Male+ 

Female 

EER [%] 

Male 

EER [%] 

Female 

IDVM  

No 

2.82 2.54 3.10 

IDVC: μ only [16] 3.68 3.32 4.12 

IDVC: µ + W100 [17] 3.03 2.86 3.22 

WCC [18] 5.04 - - 
Library of whiteners [19] 3.86 - - 

WCC-8G [18] 

Yes 

2.91 - - 

Infomap+AHC [9] 2.53   

IB-clustering [12] - 2.5 - 

 

In order to assess the sensitivity of the B matrix to dataset 

variability we ran an experiment where the μ and W PLDA hyper-

parameters are estimated from the target devset (MIXER) and only 

B is estimated from the source devset (Switchboard). The results 

are compared in Table 1 to the baseline system trained on either  

Switchboard or MIXER. Results indicate that B is not very 

sensitive to dataset mismatch (~2% relative degradation). 

 

4.4. IDVM analysis 

 

The proposed IDVM method is compared to basic IDVC and to 

extended IDVC. Note that running IDVM includes running basic 

IDVC for compensating inter-dataset variability in the μ hyper-

parameter. The results are reported in Table 2. Results indicate that 

IDVM obtains best results. EER reduction is 24% and 7% 

compared to basic and extended IDVC respectively.  The DCF 

reductions are smaller. Moreover, contrary to extended IDVC 

which requires tuning the rank of the compensated subspace (see 

[17]), IDVM does not require tuning.  

Table 3 reports a comparison of the IDVM method to other 

methods reported in the literature in the framework of  the DAC 

(methods that do not use the standard  i-vectors set are excluded 

from the comparison). IDVM outperforms all other reported 

methods that do not use any target data for training, and obtains 

comparable results to [8] and [12] which do use unlabeled target 

development data (while IDVM does not use any target data 

whatsoever). Finally, the unsupervised clustering method of 

unlabeled target data reported in [9] outperforms IDVM by 10% 

relative (but uses unlabeled target data). 
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5. CONCLUSIONS  

 
In this work we investigate how to optimally apply PLDA-based 

speaker recognition when the development data is heterogeneous 

and mismatches the target domain in the sense that the within 

speaker variability varies significantly. We observe that on the 

JHU 13' Domain Adaptation Challenge, this is a major source of 

degradation on top of the dataset shift (centering) issue we address 

in the basic IDVC method. 

As opposed to the subspace removal approach taken by the 

extended IDVC method, we address the inter-dataset variability of 

within speaker variability by finding an optimal value for the 

within speaker variability covariance matrix W in the PLDA 

model. We define a novel optimality criterion which is minimizing 

the expected square error in estimation of  the log-likelihood ratio 

of target trials when dataset-dependent PLDA models are replaced 

by a dataset independent PLDA model. 

It turns out that using some reasonable approximations, there is 

a simple closed form expression for the optimal W which is taking 

the average of the dataset-dependent W values and adding a 

correction term which  represents the normalized inter-dataset 

variability of W. For a homogeneous development set our solution 

converges back to the commonly used average. 

The proposed method named inter dataset variability modeling 

(IDVM) was found to be effective on the DAC, and it outperforms 

significantly other methods that follow the same protocol (namely 

using the DAC i-vectors and not training on the unlabeled 

MIXER).  

 

6. APPENDIX 
 

We rewrite the difference between DD-LLR and DI-LLR (Eq. (9)) 

as following: 

 

    2
1

2
1

WWI,,e 1

ii

ti                      (13) 

 

where ξ is a random vector in the i-vector space with a multivariate 

standard normal distribution. Matrix                     can be factored as 
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where P is an orthogonal matrix and Ω is diagonal with diagonal 

elements λ1,…,λd. Equation (13) can be reformulated as: 

 

      PP,,e 
t

i                              (15) 

 

and the expected loss as: 
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where c is a constant taken from the chi-distribution. Due to the 

additivity of the trace function and the trace permutation rule for a 

product of symmetric matrices, we get 
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In order to minimize the expected loss L we take the derivative of 

the expected loss with respect to Λ, and equate it to zero: 
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Note that 
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and due to the symmetry of Wi and Λ: 
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According to subsection 2.5 in [22]: 
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Therefore,  
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And the solution for Λ is 
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