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ABSTRACT
State-of-the-art i-vector based speaker verification relies on vari-

ants of Probabilistic Linear Discriminant Analysis (PLDA) for dis-
criminant analysis. We are mainly motivated by the recent work
of the joint Bayesian (JB) method, which is originally proposed for
discriminant analysis in face verification. We apply JB to speaker
verification and make three contributions beyond the original JB. 1)
In contrast to the EM iterations with approximated statistics in the
original JB, the EM iterations with exact statistics are employed and
give better performance. 2) We propose to do simultaneous diag-
onalization (SD) of the within-class and between-class covariance
matrices to achieve efficient testing, which has broader application
scope than the SVD-based efficient testing method in the original JB.
3) We scrutinize similarities and differences between various Gaus-
sian PLDAs and JB, complementing the previous analysis of com-
paring JB only with Prince-Elder PLDA. Extensive experiments are
conducted on NIST SRE10 core condition 5, empirically validating
the superiority of JB with faster convergence rate and 9− 13% EER
reduction compared with state-of-the-art PLDA.

Index Terms— Speaker recognition, Joint Bayesian, PLDA

1. INTRODUCTION

The state-of-the-art in speaker recognition is currently dominated by
the i-vector approach, that models both speaker and channel variabil-
ities in a single low-dimensional space termed the total variability
subspace [1]. An i-vector based speaker verification system main-
ly consists of three components, which are i-vector extractor based
on Gaussian Mixture Models (GMMs) or Deep Neural Networks
(DNNs) [2], i-vector post-processing (e.g. length normalization) and
discriminant analysis. Note that this approach defers the decomposi-
tion of speaker and intersession variabilities to the stage of discrim-
inant analysis, which is particularly important for this approach.

An attractive discriminant analysis technique is to construct like-
lihood ratio score based on probabilistic generative models such as
the widely used Probabilistic Linear Discriminant Analysis (PLDA)
[3] with many variants. Except the heavy-tailed PLDA [4], most
variants are Gaussian, such as Prince-Elder PLDA [3], Simplified
PLDA (SPLDA) [5], Kaldi PLDA [6], two-covariance model [7],
and Ioffe PLDA [8]. Basically, Gaussian PLDA assumes that the
j-th i-vector from speaker i obeys the following decomposition 1 :

xij = Fzi + ϵij

where the latent speaker factor zi and the intersession residual ϵij are
both Guassians and independently distributed. F is the loading ma-
trix spanning the speaker subspace. Denote by HI the intra-personal
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1Throughout the paper, we assume the data have zero-mean after a stan-

dard centering preprocessing step and omit the global mean in the model.

hypothesis that one set of i-vectors x1 and another set of i-vectors
x2 belong to the same speaker, and HE the extra-personal hypoth-
esis that they are from different speakers. The speaker verification
problem can then be solved by thresholding the likelihood ratio score
p(x1, x2|HI)/p(x1, x2|HE).

The performance of PLDA largely depends on how it can be
trained effectively to learn the within-class variability, which char-
acterizes intersession residuals, and the between-class variability,
which characterizes differences among speakers. Some improve-
ments include using data domain adaptation of PLDA parameters
[5] and discriminative training [9]. In this paper, we are primari-
ly concerned with addressing the two basic challenging issues for
the current Gaussian PLDA family. First, for PLDAs with subspace
modeling, it is difficult to determine the subspace dimension which
is crucial for performance. Low subspace dimension often leads to
under-fitting, while high subspace dimension results in over-fitting.
Second, whether using subspace modeling or not, current PLDAs
suffer from slow convergence of their implemented EM iterations.
As analyzed in[10], different parameterizations and selections of
hidden variables in designing EM updates have significant effect on
the convergence performance. These basic issues hinder improving
the performance of current PLDAs.

We are mainly motivated by recent the work of Joint Bayesian
(JB) method [10], which was originally proposed for face verifica-
tion. In JB, there is no need to determine the subspace dimension,
and it achieved faster convergence and more accuracy in [10] for
face verification. We apply JB to speaker verification and make three
main contributions. 1) We find that the EM updates with approximat-
ed statistics suggested in [10] does not work in speaker verification
problem. Instead, the EM iterations with exact statistics are em-
ployed and give better performance. 2) Inspired by Fisher LDA, we
propose to do simultaneous diagonalization (SD) of the within-class
and between-class covariance matrices to achieve efficient testing.
Compared to the SVD-based efficient testing method in [10], the new
SD method can still be applied to reduce the testing complexity even
in the case that the number of training samples per subject are dif-
ferent. 3) We scrutinize similarities and differences between various
Gaussian PLDAs and JB, complementing the analysis of comparing
JB only with Prince-Elder PLDA in [10]. Moreover, extensive exper-
iments are conducted on NIST SRE10 core condition 5, empirically
validating the superiority of JB in term of EM convergence rate and
EER performance.

2. JOINT BAYESIAN GAUSSIAN DISCRIMINANT
ANALYSIS

Joint Bayesian (JB) Gaussian discriminant analysis was first pro-
posed in [10] for face verification. Its model formulation is similar
to the two-covariance model [11] but with different parameteriza-
tions and selections of hidden variables in EM training. For speaker

5390978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



verification, we use two independent Gaussians to represent speaker
identity and intersession residuals respectively. The j-th i-vector of
speaker i, denoted by xij ∈ Rd, is decomposed as:

xij = µi + εij

where µi ∼ N (0, Sµ) is the speaker identity variable, εij ∼
N (0, Sε) models the within-speaker variability. The model pa-
rameters are Θ = {Sµ, Sε}. The extracted mi i-vectors for
speaker i are denoted by xi = [xi1; . . . ;ximi ]. The total hid-
den variables are stacked as hi = [µi; εi1; . . . ; εimi ], which
are Gaussian distributed with block diagonal covariance matrix
Σhi = diag(Sµ, Sε, . . . , Sε).

The data likelihood for observed xi is

p(xi) = N (0,Σxi),Σxi =


Sµ + Sε Sµ . . . Sµ

Sµ Sµ + Sε . . . Sµ

...
...

. . .
...

Sµ Sµ Sµ Sµ + Sε


(1)

where the dimension of Σxi is mi × d.
The parameters Θ are estimated by the EM algorithm through

iteratively optimizing the expected complete log-likelihood function
as follows:

max
Θ

∑
i

Ep(hi|xi;Θt)[logp(hi; Θ
t+1)] (2)

where Θt = {St
µ, S

t
ε} are the parameters from the t-th EM update,

and Θt+1 the parameters to be updated in the (t + 1)-th iteration.
Under this auxiliary objective function, the terms related to Sµ and
Sϵ are effectively decoupled, resulting in very elegant update equa-
tions for Sµ and Sϵ [10].

In speaker verification testing, we calculate the log-likelihood
ratio score to determine whether one set of i-vectors x1 (includ-
ing m1 i-vectors) and another set of i-vectors x2 (including m2 i-
vectors) are from the same speaker 2 :

r(x1, x2) = logp(x1, x2)− logp(x1)− logp(x2) (3)

Note that all the data likelihoods p(x1, x2), p(x1) and p(x2) can be
calculated through Eq. 1, which involves matrix inversions.

To accelerate testing, [10] employed SVD to obtain low rank
approximations of the matrices appearing in the three log-likelihood
terms in Eq. 3, which depend on m1+m2, m1 and m2 respectively.
Therefore, this speedup is more useful under the condition that the
number of i-vectors is the same across all subjects, i.e. mi = m.
This is often satisfied in the task of face verification and face search.

Here we propose first to do simultaneous diagonalization (SD)
of Sµ and Sε, ΦTSµΦ = K and ΦTSϵΦ = I . Similar to Fisher
LDA, we keep the first s < d largest eigenvalues of S−1

µ Sε, giving
the low-rank diagonal matrix K. Denote by Φ the corresponding
low-rank eigenvector matrix. By defining Ψ = Φ−T , we have Sµ =
ΨKΨT , Sϵ = ΨΨT , and moreover,

Σxi = Ω


K + I K . . . K
K K + I . . . K
...

...
. . .

...
K K K K + I

ΩT

where Ω = diag(Ψ; . . . ; Ψ). Based on this decomposition of Σxi ,
the calculation of data likelihood p(xi) could be accelerated, if we

2By abuse of notation, here x1 is not the data corresponding to speaker 1.

take Ω to transform the i-vectors via pre-computation. The likeli-
hood calculation then only involves inversion of diagonal matrices,
reducing the complexity from O(d3) to O(d). Moreover, it can be
seen that this speedup does not depend on mi and thus has broader
applicability. In this paper, we also conduct experiments to compare
these two speedup methods over speaker verification accuracy.

3. CONNECTION WITH PLDA

In this section, we investigate the connections between joint Bayesian
(JB) [10], Simplified PLDA (SPLDA) [5] and Kaldi-PLDA [12]. We
mainly show that different parameterization and selection of hidden
variables lead to different behavior of the EM algorithm, and JB
is superior to PLDAs in terms of EM convergence. For the advan-
tages of JB in allowing the data to implicitly determine the subspace
dimensionality for maximal discrimination and favoring low-rank
esimates of Sµ and Sε, the reader could refer to [10]. Table 1 sum-
marizes the similarities and differences between JB, SPLDA, Kaldi
PLDA and the two-covariance model.

3.1. Simplified PLDA (SPLDA)

Basically, SPLDA [5] assumes that j-th i-vector from speaker i
obeys the following decomposition :

xij = Fzi + ϵij (4)

where the latent speaker factor zi ∼ N (0, I) and the intersession
residual ϵij ∼ N (0,Λ) are both Guassians and independently dis-
tributed. F is the loading matrix spanning the speaker subspace.
The speaker subspace could be full rank, which is also known as the
two-covariance model [11].

The parameters Θ = {F,Λ} [5] are estimated by the EM al-
gorithm through iteratively optimizing the complete log-likelihood
logp(xi, zi; Θt+1) averaged over p(zi|xi; Θt) where Θt = {Λt, Ft}

max
Θ

∑
i

Ep(zi|xi;Θt)[logp(xi, zi; Θt+1)] (5)

Different from Eq. 2 in JB, the hidden variables in SPLDA are
only zi’s, excluding ϵij’s.3 Now we analyze the convergence prop-
erty of the EM updates for SPLDA, analogous to [10]. Note that
maximizing Eq. 5 over Ft+1 is equivalent to minimizing over Ft+1∑

i

∑
j

trace(Λ−1
t+1E[(xij − Ft+1zi)(xij − Ft+1zi)

T ])

It can be seen that

E[(xij − Ft+1zi)(xij − Ft+1zi)
T ] =

(xij − Ft+1E[zi])(xij − Ft+1E[zi])
T

+ Ft+1(I − FT
t (FtF

T
t + Λt)

−1Ft)F
T
t+1

where

E[zi] = FT
t (FtF

T
t + Λt)

−1xij

E[ziz
T
i ]− E[zi]E[zi]

T = I − FT
t (FtF

T
t + Λt)

−1Ft

When Λt is small, by setting Ft+1 as Ft, we find that

xij − Ft+1E[zi] ≈ xij − Ft+1F
T
t (FtF

T
t )−1xij = 0

3Including all hidden variables to derive the EM update for SPLDA is
ill-posed under SPLDA’s parameterization.
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Method JB two-covariance SPLDA Kaldi PLDA
Observation xi = {xij , j = 1, . . . ,mi} x̄i =

1
mi

∑mi
j=1 xij

Model xij = µi + εij xij = Fzi + εij x̄i = µi + εi1
hi {µi, {εij}} {µi} {zi} {µi, εi1}

EM objective function Q(Θt,Θt+1) Ep(hi|xi)[logp(hi)] Ep(hi|xi)[logp(xi, hi)] Ep(hi|x̄i)[logp(hi)]
Subspace dimensionality setting loose strict loose

EM convergence fast slow fast

Table 1. The summary of the similarities and difference between JB, SPLDA, Kaldi PLDA and the two-covariance model. xij denotes the
j-th i-vector of speaker i. µi ∼ N (0, Sµ) is the identity variable for speaker i, modeled by the between-class covariance Sµ. εij ∼ N (0, Sϵ)
is the intersession residual, modeled by the within-class covariance Sϵ. For SPLDA, zi ∼ N (0, I) stands for the identity variable.

Ft+1(I − FT
t (FtF

T
t + Λt)

−1Ft)F
T
t+1 ≈

Ft+1(I − FT
t (FtF

T
t )−1Ft)F

T
t+1 = 0

Hence updating Ft+1 as Ft approximately optimize the M-step and
the EM-algorithm stalls upon a single iteration.

Note that theoretically the EM algorithm is only actually guar-
anteed to produce non-decreasing optimization of data likelihood
through a series of parameter updates. Strict convergence to local
minima (or stationary points) requires further strong assumptions.
Combining this understanding of the EM algorithm and the above
analysis of halt upon a single iteration, we could realize that the EM
update for SPLDA could be easily stuck into a non-local minimum
with small Λt. The EM update for JB does not have such problem,
since JB has different parameterization and selection of hidden vari-
ables. The faster convergence of the EM iterations for JB is also
empirically observed in our experiments.

3.2. Kalid PLDA

The Kaldi is a widely used open-source speech recognition toolk-
it [12]. Here we examine the PLDA implementation in Kaldi code
repository [6]. The conceptual starting point for Kaldi PLDA is the
SPLDA model as shown in Eq. 4 with full rank F . Next, Kaldi PL-
DA is only concerned with modeling the average i-vector for each
speaker x̄i =

∑mi
j=1 xij/mi, which is distributed according to

p(x̄i) = N (0, FFT +
1

mi
Λ) (6)

where mi is the numbers of extracted i-vectors for speaker i.
Eq. 6 is then treated as the data likelihood function. All the

extracted i-vectors for each speaker are collapsed as a single sample
- the average i-vector, which is assumed to obey the decomposition :

x̄i = µi + ε̄i

where µi ∼ N (0,Γ) models the between-class variability with the
covariance Γ = FFT and the average residual ε̄i =

∑mi
j=1 εij/mi ∼

N (0, 1
mi

Λ) models the within-class variability.
The expected complete log-likelihood function for the EM algo-

rithm is optimized to iteratively estimate Γ and Λ, as follows:

max
Θ

∑
i

Ep(µi,εi1|xi;Θt)[logp(µi, εi1; Θt+1)]

The parameterization of Kaldi PLDA is similar to JB, i.e. using two
covariance matrices. Hence the EM iterations in Kaldi PLDA can al-
so select the total hidden variables (µi, εi1), with good convergence.
However, the additive decomposition only applies to the average i-
vector in Kaldi PLDA. This is helpful for estimating between-class
covariance but is detrimental for estimating within-class covariance.

At the testing phase, Kaldi PLDA also performs simultaneous
diagonalization of Λ and Γ. However, the significance of computa-
tional saving is less than the SD applied in JB, because JB calculates

the joint likelihood of a number of i-vectors while Kaldi only calcu-
lates the likelihood of a single average i-vector.

4. EXPERIMENTS

4.1. Dataset

We conduct speaker verification experiments with different discrimi-
nant analysis techniques on the NIST SRE10 core condition 5, which
includes 11982 speakers, 7169 target and 408950 nontarget trials
[13]. The DNN used in the experiments is trained on part of the
Fisher data including about 600 hours of speech cuts. The i-vector
extractor training data comprises 57517 speech cuts of 5767 speaker-
s, which are from Switchboard, Fisher and NIST SRE 04, 06, and 08.
Both JB and SPLDA are trained on SRE data, consisting of 36612
speech cuts and 3805 speakers from NIST SRE 04, 06, and 08.

Fisher Switchboard SRE duration (hours)
DNN-UBM

√
600

i-vector extractor
√ √ √

1890
SPLDA

√
1250

JB
√

1250

Table 2. The data used to train the DNN-UBM, i-vector extractor,
SPLDA and JB for speaker verification.

4.2. System Configuration

The features used in the experiments are 40-dimensional Mel Fre-
quency Cepstral Coefficients (MFCCs), including 20-dimensional
static features and first-order derivatives. The speaker verification
system uses a DNN-UBM with 5 hidden layers, 5335 senones, and
a 600-dimensional i-vector extractor. The input of the DNN-UBM
is the MFCCs extracted using 21 frames (11 frames before and 9
frames after). For discriminant analysis techniques, we implement
three references namely LDA+COS, SPLDA and Kaldi PLDA. We
apply the LDA to the i-vectors to obtain 200-dimension features and
use cosine distance metric for testing. For SPLDA, we set the di-
mension of the subspace to 300. For Kaldi PLDA, we use the default
configuration of the Kaldi toolkit [6]. The system performances are
reported by equal error rate (EER) and minimum decision cost func-
tion (DCF) defined in NIST SRE08 and SRE10 [13].

4.3. Results

4.3.1. Speaker Verification Performance

We evaluate LDA+COS, Kaldi PLDA, SPLDA and JB on the NIST
SRE10 core condition 5. These four models share the same training
and test data. Fig. 1 illustrates the detection error trade-off (DET)
curves of LDA+COS, SPLDA, Kaldi PLDA and JB for discriminan-
t analysis with configurations described in Section 4.2. From the
results show in Tab. 3, we can conclude that :
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Fig. 1. DET curves for JB, SPLDA, Kaldi PLDA and LDA in SRE10
core condition 5 evaluation.
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Fig. 2. The influence of subspace dimensionality on JB and SPLDA
using NIST SRE10 core condition male test data.

• Compared to distance-based discriminant analysis LDA+COS,
probabilistic generative model based methods such SPLDA,
Kaldi PLDA and JB achieve better performance on EER.

• In terms of EER, JB improves 13.0% and 45.3% compared to
SPLDA and Kaldi PLDA respectively on SRE10 male tests,
9.2% and 30.9% on female tests. This verifies that JB with
careful selection of hidden variables achieves better parame-
ter estimation due to efficient EM updates.

• SPLDA achieves better results on EER than Kaldi PLDA, be-
cause SPLDA utilizes the joint likelihood of i-vectors rather
than the single average i-vector as used in Kaldi PLDA to es-
timate the parameters.

4.3.2. Subspace Dimensionality

Here we investigate the impact of the sub-space dimensionality of JB
and SPLDA for discriminant analysis, which is shown in Fig. 2. Two
methods (SVD, SD) are used to reduce the subspace dimensionality
of JB in speaker verification testing. It can be seen that: 1) The di-
mension of the subspace plays an important role in SPLDA that low-
er may cause under-fitting, while higher may cause over-fitting. 2)
The JB performance fluctuates slightly with the change of subspace
dimension in testing, but the time complexity reduces from O(d3)
to O(s3). Loose parameterization for JB makes it more robust since
the dimension of the subspace is automatically fitted via data rather
than manual defined. 3) SVD and SD have close performances but
SD has wider applicability.

4.3.3. Convergence Rate

As discussed before, EM iterations for SPLDA are easier to stall in
a single iteration. Fig. 3 shows the neg-loglikelihood curve of SPL-
DA with the optimal subspace dimensionality and that of JB trained
by EM with exact and approximated statistics. From Fig. 3, first we
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Fig. 3. (a) The negative log-likelihood of JB (EM with exact or
approximated statistics) and SPLDA during training. (b) The zoom-
in of negative log-likelihood convergence curves for JB with exact
and approximated EM statistics.

System SRE10 MALE SRE10 FEMALE
EER DCF10 DCF08 EER DCF10 DCF08

LDA+COS 1.905 0.292 0.091 2.619 0.399 0.126
Kaldi PLDA 1.299 0.284 0.079 1.944 0.345 0.102
SPLDA 1.010 0.217 0.055 1.621 0.287 0.079
JB 0.894 0.188 0.048 1.485 0.245 0.069

Table 3. Performance comparison of four different discriminant
analysis back-ends on NIST SRE10 core condition 5.

find that JB converges faster than SPLDA with better parameter es-
timation. Second, we find that JB trained by EM with approximated
statistics proposed by [10] will diverge in Fig 3b, while JB trained
EM with exact statistics converges nicely.

EER SRE10 MALE SRE10 FEMALE
JB 0.894 1.485
JB-SVD (dim=403) 0.901 1.513
JB-SD (dim=407) 0.899 1.510
SPLDA (dim=403) 0.981 1.674
SPLDA (dim=407) 0.981 1.673

Table 4. The effect of dimensionality reduction for JB and PLDA.
The dimension of subspace for JB-SVD is determined by dim =
rank(A) = 403 (A is defined in [10]) and the dimension of the
subspace for JB-SD is determined by dim = rank(Sµ) = 407.

Tab. 4 shows the differences on EER between SPLDA and JB
with or without dimension reduction. It is observed that even with
the same dimension of the subspace learned by JB, SPLDA is still
worse than JB. This justifies our analysis that model formulation and
hidden variable selection of JB leads to better parameter estimation
than SPLDA.

5. CONCLUSIONS

In this paper, we propose to apply JB to model i-vectors with careful
parameterization and hidden variable selection that benefits EM it-
erations. Both theoretical derivation and experiments conducted on
the NIST SRE10 core condition demonstrate that: 1) the parameter-
ization of JB enables it to learn the intrinsic dimensionality of the
identify subspace, which can reduce the system complexity without
performance degradation; 2) Hidden variables selection of JB makes
EM iterations converge faster with better parameter estimation; 3)
The EM with exact statistics performs better than with approximat-
ed statistics. For future work, it is interesting to apply data domain
adaption [5] and feature compensation [14, 15] and nearest-neighbor
discriminant analysis (NDA) [16][17] that have been successfully
applied to PLDA to JB to further improve performance.
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