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ABSTRACT

Probabilistic linear discriminant analysis (PLDA) is widely described
as an effective model for text-independent speaker verification
in the i-vector space. The PLDA scoring function is typically
formulated as the likelihood ratio between the speaker-adapted and
the universal PLDAs. In this case, the adaptation of PLDA was
performed through the speaker factors. In this paper, we show that
the channel factors of the PLDA could be equivalently exploited
to deal with the multi-source conditions. In speaker verification,
with the proposed method, a PLDAmodel trained on conversational
telephone speech could be adequately adapted for interview-style
microphone recordings. Experimental results on NIST SRE’08
and SRE’10 datasets confirm that the proposed method is effective,
especially for the case whereby enrollment and test utterances were
captured from different sources.

Index Terms— multi-source speaker verificaiton, channel
adaptation, channel prior estimation, probabilistic linear discriminant
analysis

1. INTRODUCTION

In recent years, factor analysis techniques have been successfully
applied to deal with the session variability in text-independent
speaker verification. Among others, eigenchannel was first proposed
to model the channel variability with a low-rank subspace [1, 2].
Joint factor analysis (JFA) was then proposed to model both the
speaker and channel variabilities with independent linear subspaces
[3, 4]. Thereafter, the i-vector was proposed in [5]. In the i-vector
framework, a vector of low- and fixed-dimension was used to
represent the session variability contained in a speech utterance,
including both the speaker and channel variabilities. When i-vector
is used for speaker recognition, session compensation is performed
using the probabilistic linear discriminant analysis (PLDA) [6].
In these methods, the channel variability is compensated with the
channel variation to be a part of the covariance and all the test and
enrollment speech utterances are compared on the global channel
condition.

For speaker recognition with heterogeneous datasets, where
the speech utterances were acquired under different recording
scenarios (e.g. telephone conversation versus interview style,
broadband microphone versus narrow-band telephone speech),
channel subspace needs to cover all the possible sources. A
commonly used method is concatenating the channel subspaces that
are independently trained for individual sources [7]. However, since
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the rank of the final channel subspace is decided by the number of the
recording sources, the subspace matrix will become over-complete
with the number of columns exceeding the dimensionality of
the i-vectors. Thus a trade-off between the rank of the channel
subspace and the modeling capability on all the sources needs to
be considered. Another method proposed in [8] is through the
use of informative prior during i-vector extraction, which became
complicated when only i-vectors are available. In this paper, we
propose an alternative solution to handle the multi-source condition
by adapting the PLDA model using source-specific prior.

In [9], we proposed to adapt the PLDA model to the channel
condition depending on the test i-vector in every single trial during
scoring. In this manner, the training and test utterances can
be compared upon the same channel, providing a recipe to the
multi-source speaker verification. But it didn’t bring significant
performance improvement. According to our analysis, two possible
explanations can be responsible for such a phenomenon. One
is that the posterior estimation of the channel variable given a
single i-vector may not be accurate enough to represent a kind of
channel condition. The other is that the PLDA scoring models vary
among the testing trials, bringing vibration to the scores and causing
uncertainty in setting the decision threshold.

In this paper, for multiple sources, we propose to adapt the
PLDA model according to the recording sources. Given the type
of recording sources of the enrollment and test utterances, the
corresponding prior distribution can be chosen for PLDA scoring.
The adaptation is performed through the prior distribution of the
channel variable on the specific source type. Experiments were
carried out on NIST SRE’08 and SRE’10 where three recording
sources, i.e., telephone, microphone and interview were present
[10, 11]. Experimental results confirm the effectiveness of such an
adaptation in multi-source speaker verification tasks.

2. THE I-VECTOR PLDA PARADIGM

The crux of i-vector extraction lies in finding a fixed-length and
usually dimension-reduced representation of a given utterance which
is always of variable length. The fundamental assumption is that
for a set of speech utterances, the variability among them lies in
a linear and low-rank subspace, denoted with T. Given a feature
sequence O, extracted from an utterance, the mean supervector of
the utterance-specific GMM m,. can be modeled as:

m, = mo + Tw, (D
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In (1), mo is the mean supervector of the universal background
model (UBM), denoting the common variability shared by all the
utterances, w,. is the session-specific variable corresponding to O,.,
containing the session variability in O, that is modeled by T [5].

An i-vector is taken as the maximum a posteriori estimate of the
latent variable w:

¢r = argmaxp (O lmg + Tw, )N (W, ]0,1) )

where the prior distribution of w, is standard normal as w, ~
N (w-10,1).

The low-rank subspace T captures not only the speaker variability,
but also channel variability. For better speaker comparison, the
impact of channel needs to be compensated, for which PLDA is
among the mainstream techniques. From the perspective of its
generative property, PLDA assumes an i-vector extracted from the
r-th session of speaker s to be generated by:

P (¢s,r |hs, X5 ) = N (¢s,r |t + Fhs + GXs,-, 2)  (3)

The vector p denotes the global mean of all i-vectors. The
latent variable h, accounts for the speaker identity while x; .
represents the channel effects. The modeling capability of PLDA
relies on the speaker and channel loading matrices, denoted as
F and G, respectively. 3 models the residual variation that
cannot be accounted for by F and G. We refer to the parameters
0 = {u,F, G, X} as the parameter set of the PLDA model, which
can be estimated by fitting the model onto a given set of training data
using the expectation maximization (EM) algorithm [12, 13, 14].

3. PLDA SCORING MODEL

In PLDA, the prior over the latent variables h and x are standard
normal distribution as N (0, I). Integrating out the latent variables,
the marginal density of an i-vector ¢ can be obtained as follows:

(@) = //\/(<b|/.t+Fh+Gx,ZJ)/\/’(h|O7I)J\/(x|07I)dhdx

zN(qb‘u,FFT-l—GGT—i—Z)
(€]

From the above equation, it can be seen that a PLDA model
is essentially a Gaussian distribution with its covariance matrix
composed of both the speaker and channel variabilities, FF' and
GG respectively. As a kind of probabilistic model, PLDA has its
inherent likelihood computation according to (4) which is used in
the two-hypothesis scoring model [6].

3.1. Scoring models on speaker and channel adaptation

Given a pair of i-vectors, ¢. for enrollment and ¢ for testing, the
speaker verification task is to determine whether the two i-vectors
come from the same speaker or not. Besides the conventional
two-hypothesis scoring model, in [15], we proposed an equivalent
scoring model from the perspective of model adaptation which can
be described mathematically as follows:

) — log P2 192)
l((b 7¢t) og p(¢t)
N (¢ |p+ Fm,, FL7'FT + GGT + %)

N (¢¢ |, FFT + GGT + %)

®

= log
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where m, and L ! are the posterior mean and covariance estimates
of the speaker variable h, given the i-vector ¢, . The denominator
represents the likelihood on the universal PLDA model and the
numerator denotes the likelihood of ¢ given the PLDA model that
is adapted to speaker s with the posterior distribution parameters of
the speaker variable h.

Furthermore, in [9], we proposed to adapt the PLDA model to
the channel of the test utterances with the scoring model to be:

l (¢e7 ¢t)
N (¢ |p+ Fm, + Gme, FL;'FT + GL;'GT + %)

=1
T N (64 |n+ Gme, FFT + GL'GT + 30)

(6)

where m; and L L are the posterior mean and covariance of the
channel variable x estimated on the test i-vector ¢¢. However,
the performance comparison given in [9] shows that the channel
adaptation is not that effective. Two possible reasons can be
responsible. One is the inaccuracy of the posterior distribution
parameters estimated with only one i-vector in representing its
specific channel. The other is the uncertainty in the decision
threshold on the scores computed on the models that are adapted to
the different testing i-vectors.

4. MULTI-SOURCE ADAPTATION WITH INFORMATIVE
PRIOR

In the conventional PLDA model, the prior distribution of the
channel variable is assumed to be standard normal, which is
non-informative about the specialty of the source of the recordings.
The model performs well when the test utterances are from the same
source with the training dataset. However, when the model is tested
on data from different sources, the performance is always poor. In
this section, we propose to adapt the PLDA model to specific sources
through prior distribution imposed on the channel variable.

Given a training dataset of the target source composed of S
speakers with the feature vectors denoted as O = Ule Os,
where O, is the feature vector of the utterances from the s-th
speaker. (O, can be specified with respect to the utterances as
Os = {Os,1,...,0s,r, }, With R to be the number of utterances
of speaker s for s = 1, ..., S. For each of the speech utterances, an
i-vector can be estimated, collectively denoted as Ule U%e, bs,e
In the following, we describe the process of adapting a well-trained
PLDA model, § = {u,F,G,X}, to fit the target source which
results in the target model with parameter set 0 = {us, F, G, 3}.
To achieve this goal, we use the informative prior distribution
parameters for the channel variable on the training set of the target
source estimated by minimizing its divergence with the posterior
distribution [16].

4.1. Channel posterior estimation

Given the i-vector ¢, from the i-vector set of speaker s as
Ufél s,r» [13] presented the posterior estimates of its channel
variable x; .. To be specific here, the posterior mean and covariance
of the speaker variable h, needs to be estimated first as follows:

-1
-1 u T -1
L' = [1+RF (GG + 2) F %

R 3
Eh]=L,.Y F (GGT+3) Nber—pn)  ®)

r=1



with L_1 and E[h,] to be the posterior covariance and mean

estimates of h respectively, given U ) Psre
In [13], the posterior mean estimation of x - is given by:

QG {¢sr —

And the posterior covariance estimation of x, , is given by

ms r = E [xs,r} - M — FE [hs]} (9)

L;! =Q (I + GTE’lFL;jFTE’lGQ) (10)

where Q = (I+ G™=7'G) .

From (9) and (10), we can see that the posterior estimations
of the mean and covariance of x, , for every single i-vector ¢s .,
is influenced by the other (Rs — 1) i-vectors from that speaker
{bs,1y ey Gsyr—1, Ps,r41, .-, s,R, }. This is reasonable for the
mean estimation since it is a determinant that represents the variability
contained in an i-vector not modeled as the speaker variability.
But this is not the case for the posterior covariance. In fact, the
covariance models the uncertainty of approximating the value of
X, With its posterior mean estimate and should be estimated within
the utterance itself. In this paper, the posterior covariance of the
channel variable x;,, given ¢, , is estimated within the i-vector
itself as:

C.., = {I +GT (FFT + 2) G} a1
Note that when Rs = 1, the estimation given in (10) reduces to
(11). And for any given i-vector, (11) only depends on the model
parameters and is free from the specific speech utterances.

4.2. Channel prior estimation

For each i-vector in the dataset for a target source US 1 UT 1 Ps.rs
the posterior distribution of the latent channel variable x;, can
be computed according to (9) and (11), ie., p(Xsyr|dsr) =
N (ms,, C). For brevity, the subscript for indexing the utterance
in C as used in (11) is ignored. Assume the priori of the channel
variable for the target source condition is normally distributed as
p(x) = N (w,P) with w and P to be the mean and covariance
respectively. The parameters can be obtained by minimizing the
Kullback-Leibler (KL) divergence of N (w,P) from the set of
posteriors p (Xs,r |ps,r ) Where s = 1,...,S and r = 1, ..., Rs. The
objective function is defined as:

Xsr|msryc)} (12)

D (6mp) Ei:i: {log N )

The expectation is taken with respect to the posterior probability.
The solution to the prior distribution parameters are obtained by
setting the derivatives of D (fnvp) with respect to w and P to 0.
To be specific, the minimum divergence estimates can be expressed
in closed form as follows:

S Rs
-5 }{Zj:m” (13)
s=17""5 s=1r=1
P=C+S (14)

where S is the covariance matrix on the posterior mean vectors,
computed as:

S Rs

b P DI

S s=1r=1

(my, —w)' (15

4.3. Source adaptation with channel prior estimation

Assume that the PLDA model trained on the original source is
described mathematically as:

p (()bs,'r |hs,xs,7‘) - N(¢s,7‘ ‘[l, + Fhs + st,'m 2) (16)

where the prior distribution of hs and x,, are assumed to be
standard normal, i.e., hy ~ A (0,I) and x,,, ~ /\/(0 I).

For the target source with training i-vectors Ug 1 UT 1 s
the prior distribution parameters for x can be estimated using (13)
and (14), denoted as x¢ ~ (w,P), where the subscript ¢ specifies
the target channel. By absorbing w and P into the model parameters,
the target PLDA model can be described as:

P (()bs,'r |h57 Xs,'r) = N

(¢s,r |I»1't + Fhs + Gtxs,'m 2) (17)

where py and Gy are the global mean vector and channel subspace
adapted to the target source as follows:

pe = p + Gw (18)

G; = GL (19)

with L to be the lower triangular matrix of the cholesky decomposition
of P,i.e., LLT = P. Note that by absorbing the prior information to
the model parameters, in the source-adapted model (17), the prior of
X, falls back to standard normal distribution as x , ~ N (0,1I).
Note that during the source adaptation, the speaker subspace F and
the residual covariance X are kept unadapted.

5. MULTI-SOURCE PLDA SCORING

We adopt the speaker-adaptation PLDA scoring model proposed in
[15] for scoring on the given two i-vectors in a trial, denoted as ¢e
and ¢ for enrollment and testing respectively. In the enrollment
phase, denote the model parameter set of the source type of ¢ as 0.
The posterior mean and covariance of the speaker variable h, can be
estimated given ¢ as p (hy |¢e; 0 ) = N (me, Lo ") for enrolling
speaker adaptation.

In testing, the PLDA model parameter set is chosen according
to the source condition of ¢; for testing, denoted as Oist =
{tstst, Fy Gist, 2} The score of the trial can be computed as the
log-likelihood ratio between the speaker adapted and the universal
PLDA models on the test source. Mathematically, it is computed as
follows:

l (¢e7 o5 be, etst)
N (Htst +Fme, FL;'FT + GGl + 2)
N (IJ'ESW FFT + GtstG;rst + E)

" tog (20)

6. EXPERIMENTS

We carried out our experiments on all the common conditions in
short2-short3 of NIST SRE’08 and coreext-coreext of SRE’10. The
equal error rate (EER) and the detection cost function (DCF) are
used to evaluate the performance. We consider the minimum DCF
at the operation points of DCF08 and DCF10 [10, 11].

For the i-vector system, we use the i-vector proposed in [17] and
[18] whose Baum-welch statistics are computed on the posteriors
given by a deep neural network (DNN) trained as the acoustic
model for speech recognition. The DNN is trained on Fisher and
Switchboard datasets using Kaldi [19] with 4112 senones modeled.
The network feature is 40 filterbank features appended with its first
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Table 1. Performance comparison between the baseline and
the source adaptation on all the common conditions (CC) of
short2-short3 of NIST SRE’08 (telephone / source-adapted PLDAs)

Male
EER(%) DCFO08 DCF10
CCl(itv-itv) | 3.868/2.947 0.147/0.106 0.257/0.196
CC2(itv-itv) | 0.164/0.000 0.008/0.000  0.008/0.000
CC3(itv-itv) | 4.051/3.087 0.154/0.111 0.271/0.205
CC4(itv-tel) | 2.635/2.456 0.127/0.112  0.248/0.205
CC5(tel-mic) | 2.161/1.712  0.097/0.075  0.415/0.337
CCo6(tel-tel) | 4.984/4.939 0.257/0.256 0.667/0.657
CC7(tel-tel) | 1.410/1.398 0.071/0.069 0.376/0.387
CC8(tel-tel) | 0.397/0.429  0.021/0.022  0.193/0.219
Female
CCl(itv-itv) | 6.300/3.637 0.271/0.150  0.526/0.321
CC2(itv-itv) | 0.000/0.000  0.000/0.000  0.000/0.000
CC3(itv-itv) | 6.605/3.817 0.285/0.158 0.552/0.337
CC4(itv-tel) | 4.916/4.142 0.209/0.186 0.698/0.676
CC5(tel-mic) | 3.698/2.608 0.116/0.095 0.159/0.155
CCo(tel-tel) | 6.782/6.662 0.375/0.372  0.989/0.990
CC7(tel-tel) | 1.974/1.950 0.097/0.095 0.863/0.846
CC8(tel-tel) | 2.123/2.114 0.082/0.080 0.976/0.984

and second order derivatives. For network input, the feature vector
of each frame is concatenated with 5 frames on its left and right
sides. The network structure is 1320 — 5 x 2048 —4112. Among the
4112 senones, 20 were removed, including laughter, silence, noise
and OOV, leaving 4092 senones for total variability modeling.

For session variability modeling, we used a gender-dependent
setup. The UBM was trained with the NIST SRE’04 dataset.
The acoustic features are 13-dimensional MFCC with the first
and second order derivatives appended, leading to 39-dimensional
feature vectors. In the test set, three different sources are included,
telephone, microphone and interview. In our training datasets, we
had telephone data from NIST SRE’04, SRE’05, SRE’06 and the
Switchboard; microphone and interview datasets were from NIST
SRE’05, SRE’06 and Mixer. Compared with the telephone dataset,
the microphone and interview datasets are significantly smaller in
scale, so the two sources are modeled as one channel with their
training datasets pooled together.

As the primary data in our training datasets, the telephone
datasets are used to train the total variability model of rank 400.
Besides, it has been shown in researches such as [1] that in
multi-source tasks, the speaker model trained on the primary dataset
gives the best performance. So in our experiments, considering the
modeling for both speaker and channel, we trained a PLDA model
on the telephone datasets with the ranks of the speaker and channel
subspaces to be 200 and 400 respectively with a diagonal covariance.
The telephone PLDA was set as the baseline, on which we adapted
for microphone (and interview).

Given the original PLDA model well trained on the telephone
channel, we estimated the channel prior on the telephone and
microphone (and interview) datasets respectively using their training
datasets. Then the original PLDA model was adjusted on the
telephone and adapted to microphone (and interview) using the
estimated priors specific to the sources. In testing, the adapted
PLDA models were chosen based on the recording sources of the
enrollment and test utterances for speaker enrollment and scoring
respectively.

Table 2. Performance comparison between the baseline and
the source adaptation on all the common conditions (CC)
of coreext-coreext of NIST SRE’10(telephone / source-adapted
PLDAs)

Male
EER(%) DCF08 DCF10
CCl1(itv-itv) 2.183/2.146  0.074/0.071  0.373/0.349
CC2(itv-itv) 3.952/3.576 0.150/0.126 0.543/0.489
CC3(itv-tel) 3.164/3.080 0.121/0.118 0.342/0.319
CCA4(itv-itv) 2.409/2.147 0.081/0.070  0.243/0.216
CC5(tel-tel) 1.121/1.110  0.055/0.054  0.199/0.197
CCo6(tel-tel) 1.908/1.823 0.118/0.115 0.471/0.460
CC7(mic-mic) | 2.355/1.669 0.105/0.084 0.413/0.365
CC8(tel-tel) 0.754/0.747  0.037/0.035 0.178/0.162
CC9(mic-mic) | 0.850/0.815 0.038/0.030 0.102/0.068
Female
CCl(itv-itv) 3.265/2.893  0.133/0.115 0.519/0.444
CC2(itv-itv) 6.802/5.691  0.305/0.235 0.820/0.667
CC3(itv-tel) 3.140/2.932  0.145/0.129 0.494/0.453
CCA4(itv-itv) 2.493/2.086 0.124/0.096  0.440/0.325
CC5(tel-tel) 1.833/1.794  0.094/0.091  0.290/0.291
CCo6(tel-tel) 3.168/3.185 0.166/0.165 0.575/0.566
CC7(mic-mic) | 4.606/2.657 0.237/0.177 0.626/0.519
CCB8(tel-tel) 1.216/1.223  0.071/0.070 0.311/0.312
CC9(mic-mic) | 1.116/0.596 0.045/0.040 0.129/0.088

In our experiments, we compared the performances of the
telephone PLDA with the source-adapted PLDA model. Tables 1
and 2 present the performances of the two models. In the tables,
tel, mic and itv are abbreviations for telephone, microphone and
interview respectively. From the comparison, we observe that with
the channel adapted to the enrollment and test i-vectors respectively
according to their recording sources, better performances can be
achieved when microphone and interview channels are included
for testing, i.e. where the source mismatch between testing and
training exists. This confirms that the source mismatch between
the data for PLDA training and testing can be solved with the
source adaptation on the PLDA model. For the cross-source tasks,
such as CC4, CCS in SRE’08 and CC3 in SRE’10, the models
for the enrollment and testing were chosen according to their
recording sources respectively, and the results show its effectiveness
in coping with the channel mismatch problem. However, for the
telephone-telephone trials, the performance of adaptation is not
consistently better than the baseline. This is reasonable since there
is no source mismatch problem on the speech utterances between
model training and testing.

7. CONCLUSION

We propose to adapt a generic PLDA model to a target source with
the prior distribution of the channel variable to be informative of
the target source. We resort to the criterion of minimum divergence
between the posterior and prior distributions of the channel variable
for prior estimation. For speaker verification task where the speech
utterances from multiple sources are present, by choosing an
appropriate prior according to the sources of the enrollment and
test utterances, the source mismatch problem between the training,
enrollment and test utterances is resolved.
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