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ABSTRACT

This paper presents a learning and scoring framework based
on neural networks for speaker verification. The framework
employs an autoencoder as its primary structure while three
factors are jointly considered in the objective function for
speaker discrimination. The first one, relating to the sample
reconstruction error, makes the structure essentially a gener-
ative model, which benefits to learn most salient and useful
properties of the data. Functioning in the middlemost hidden
layer, the other two attempt to ensure that utterances spoken
by the same speaker are mapped into similar identity codes in
the speaker discriminative subspace, where the dispersion of
all identity codes are maximized to some extent so as to avoid
the effect of over-concentration. Finally, the decision score of
each utterance pair is simply computed by cosine similarity of
their identity codes. Dealing with utterances represented by
i-vectors, the results of experiments conducted on the male
portion of the core task in the NIST 2010 Speaker Recogni-
tion Evaluation (SRE) significantly demonstrate the merits of
our approach over the conventional PLDA method.

Index Terms— autoencoders, speaker verification, dis-
criminative training, neural networks, PLDA

1 Introduction

Even though the methodology of deep neural networks
(DNNs) has seemingly become more and more popular in
the field of speaker recognition and obtained some gains in
performance [1, 2, 3, 4, 5, 6], either total variability model-
ing (i-vector) [7] or probabilistic linear discriminant analysis
(PLDA) [8], as well as their modifications, are still indis-
pensable and robust ingredients in most of current speaker
verification systems. The aim of i-vector is to represent
variable-length speech signals by fixed-size vectorial tokens
while the session/channel variabilities induced by various
sources are compensated and the speaker characteristics are
abundantly and ulteriorly preserved [9]. Given two i-vectors,
the task of PLDA is to linearly discriminate between speak-
ers in a low-rank subspace and give a reasonable metric to
measure their decision score in a probabilistic sense [10, 11].

Actually, going through the latest three ICASSP proceed-
ings (2014-16), more than three-fourths of papers dealing
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with speaker verification use PLDA as one of their scor-
ing backends, among which there are much fewer efforts to
either develop their own competitive algorithms for back-
end speaker discrimination or make some improvements to
PLDA by standing on its shoulders. For example, Rohdin
et al. gave a discriminative PLDA training algorithm, where
some constraints are imposed on the derivation of the speaker
variability matrix [12]. Similar to the work by Lee et al.
[13], Cumani and Laface employed pairwise support vector
machines (SVMs) to efficiently classify pairs of i-vectors as
belonging or not to the same speaker even with large-scale
datasets [14]. Nautsch et al. proposed a PLDA-alike ap-
proach with restricted Boltzmann machines (RBM), which
aims at suppressing channel effects and recovering speaker-
discriminative information on a small dataset [15]. Most
recently, Heigold et al. used DNNs and long short term mem-
ory (LSTM) to represent utterances and directly map each
trial set of utterances to a decision score for verification [16].

In this paper, we replace the role of PLDA with an au-
toencoder and tweak its objectives for speaker discrimina-
tion. The autoencoder is a symmetric neural network that
is trained to approximately copy its input to the output [17].
Besides the reconstruction error, which makes the autoen-
coder analogous to a generative model that benefits to un-
supervisedly learn most salient and useful properties of the
data, two more objective functions are concerned in our pro-
posed framework. They attempt to ensure that utterances spo-
ken by the same speaker would have similar identity codes
(i-codes) in the speaker-discriminative subspace represented
by the middlemost hidden layer, where the scatterness of all
i-codes are also maximized to some extent to avoid the effect
of over-concentration. Finally, the decision score of each ut-
terance pair is simply computed by cosine similarity of their
i-codes. To our best knowledge, despite the autoencoder has
been widely applied to many speech processing tasks, such
as speech enhancement [18, 19], acoustic novelty detection
[20], and reverberant speech recognition [21], much less pa-
pers used it directly for speaker recognition.

Most important of all, our contributions are two-fold.
First, we present a kind of neural network-based discriminant
analysis, which consumedly and nonlinearly extends the ca-
pability of PLDA. Second, our proposed model is immune to
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computational intractability, e.g., matrix inversion when the
training set becomes very large [8, 11].

Our proposed framework, its objectives and analogy with
PLDA, and its realization and evaluation, are given and re-
ported in the remainder of this paper.

2  Objectives

2.1 Probabilistic linear discriminant analysis

The PLDA model assumes that the j-th utterance (i-vector) of
the ¢th speaker is described by the following process [11]:

xij = p+ Fh; + Gw;; + €5, ey
S—_— ——
Identity Noise

where p and €;; denote the global mean and the residual fol-
lowing a Gaussian distribution with zero mean and diagonal
covariance 3, respectively. By (1), each x;; is factorized into
two parts. In the identity part, the matrix F' denotes the sub-
space, where the utterances that belong to the same speaker
would have the same projective location or speaker identity,
characterized by a hidden variable h;. As for the noise part,
all other information irrelevant to speaker discrimination is
thrown into the subspace G and locates in a noise factor w;;.
Both h; and w;; are standard Gaussian distributed.

The model parameters {1, 3, F, G}, can be estimated by
the EM algorithm, and the likelihood of a set of i-vectors can
be used as the decision score for speaker verification.

2.2 Three PLDA-inspired objective functions

By the framework of PLDA, we have two kinds of sights.
First, PLDA is a generative model, equipped with an infer-
ence procedure for computing the distribution of latent vari-
ables given an observation, and providing a generative pro-
cedure for stochastically generating a copy of an observa-
tion. Second, given two utterances x1; and X»; that belong
to different speakers, PLDA seems not to explicitly ensure
that their speaker identities h; and hs will be consumedly
different. This might increase the number of false alarms in
verification tasks. Therefore, we design three kinds of objec-
tive functions for speaker discrimination in order to take the
essence of PLDA and make up for its deficiency.

2.2.1 The reconstruction error

Suppose our proposed model M contains a pair of determin-
istic mappings f(-) and g(-), which are responsible for latent
variable inference and observation generation in the termi-
nology of Bayesian inference, respectively. Given a set of

training data X’ ready to go through the inference-generation

process by X ER H L X, where # is the internal representa-

tions residing in a latent subspace, the average reconstruction

error based on the residual sum of squares between x € X
and its reconstruction y = g (f(x)) is given by

1
FX) =1 >y —xll3 2)
xEX

where |-||, is the 2-norm operator and | X'| is the sample size.

Like a copy machine, M is usually restricted in ways that
allow it to copy only approximately, and to copy only input
that resembles the training data. Because the model is forced
to prioritize which aspects of the input should be copied, it
often learns useful properties of the data.

2.2.2 The speaker identity loss

According to the above italic description quoted from [17],
we can suppose H contains salient and useful features, cer-
tainly, including untreated speaker characteristics, by mini-
mizing (2). Without loss of generality, we split H into two
parts, Hs and H,,, where H; is supposed to contain all of in-
formation for speaker discrimination, and H,, possesses the
residual content. Suppose Hs = {Hs1,..., Hsm}, Where
‘H i corresponds to those training data that belong to the i-th
speaker of m training speakers, and the loss function related
to speaker identity is described as follows:

1 & 1 — 2

where h,; denotes the empirical mean vector of Hs;. Ap-
parently, the term in parentheses in (3) measures the average
within-speaker compactness. Therefore, to minimize (3) im-
plies to increase the similarity score between two utterances
that belong to the same speaker if the score metric is 2-norm-
related. In this way, the number of false rejects in verification
tasks will conceivably decrease to some extent.

2.2.3 The internal dispersion

The last objective function to be minimized is about the dis-
persion of fotal internal representations, which is given by

1 _
Fd(Hs) = _|Hs| Z Hh_hSHz’ S

he#H,

where h, denotes the empirical mean vector of #. There are
two reasons to support the necessity of (4). First, the mini-
mum of Fs(H,) in (3) might naturally become zero when the
model makes all of h € H turn out to be the same. Second,
analogically speaking, the goal of linear discriminant analy-
sis (LDA) is to maximize the Rayleigh quotient given by the
total scatterness over the within-class scatterness [22]. The
expression is equivalent to the traditional attempt to maxi-
mize the between-class scatterness in the whitened space [23].
Therefore, the cooperation of (3) and (4) can keep a distance
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Fig. 1. The architecture of DCAE.

between utterances that belong to different speakers so as to
reduce the errors caused by false alarms.

Finally, by combining (2), (3), and (4), the new goal of
the training process is to find an optimal M by minimizing

F(X) + a (BFs(Hs) + (1 — B)Fa(Hs)) + AIM]3, (5)

where o > 0 controls the relative importance of the last two
objective functions to the reconstruction error, 8 € [0, 1] ad-
justs the ratios between the speaker identity loss and the in-
ternal dispersion that we want to emphasis, and )\ is a regular-
ization parameter that controls the complexity of the model.
The treatment of « and £ is akin to that in ElasticNet [24].

3 Realizations

We use an artificial neural network-based autoencoder, called
the discriminative autoencoder (DCAE), to realize M along
with the objective function (5). In contrast with another work
that trains the autoencoder in a discriminative way in [25], the
cost function of DCAE is not only determined on the output
layer but also highly affected by the middlemost code, i.e., the
internal representation. The detailed structure and definition
of the autoencoder can be referred to [26], [27], and [17].

The architecture of DCAE is depicted in Figure 1. It maps
an input x to an output y through an internal representation or
code h, which is split into h and h,, as described in Section
2.2.2. The encoder f(-) and the decoder g(-) are built up of
full-connected hidden layers and their corresponding weights
and biases. The activation flows through the hidden layers and
the code layer by means of the hyperbolic tangent function,
until it reaches the final layer and linearly gives the output.

To train DCAE, a back-propagation process is imple-
mented from the output layer down through the whole DCAE
to adjust all parameters. The gradient of each parameter in
M can be easily derived by partial differentiation on the cost
function (5), so that the model can be iteratively updated by
using an optimizer based on gradient descent.

To generate the decision score sj 2 of x; and x, for
speaker verification, we simply use the cosine similarity of
their i-codes, i.e., (hs1 - heo)/ ||hst|| [[hs2]-

4 Experiments and Results

4.1 Experiment setup

All the experiments were carried out on the male portion of
the core task in NIST SRE-10 (core-core/condition-5) for
evaluation and NIST SRE-08 (short2-short3/condition-6) for
model validation based on the equal error rate (EER), where
each session is an excerpt of five-minutes telephone speech
[28, 29]. With the frame length of 25 ms and the frame
shift of 10 ms, speech parameters were represented by a 60-
dimensional feature vector of Mel-frequency cepstral coeffi-
cients (MFCCs) with first and second derivatives appended
using a 2-frame window, followed by data distribution-based
feature warping with a 300-frame window in order to com-
pensate for the effects of environmental mismatch [30].

A gender-dependent UBM consisting of 1,024 Gaus-
sian components with diagonal covariance matrices, the total
variability model (for i-vectors) with rank 400, the PLDA
model, as well as our proposed DCAE model, were trained
with 8,511 utterances spoken by 413 speakers, drawn from
NIST SRE-04 and SRE-05, Switchboard II-Phase 1, 2 and 3,
and Switchboard Cellular Part 1 and 2. The i-vectors were
length-normalized prior to PLDA and DCAE training [31].

For DCAE, we set the tunable numbers of nodes in the
identity and noise layers to 300 and 100, respectively. The
number of hidden nodes is 400 for all hidden layers. Initial
weights are uniformly sampled by the Glorot process that is
fit for the tanh activation function [32]. The adaptive gra-
dient algorithm adopted to update the model parameters is
AdaGrad, which scales the learning rate by dividing with the
square root of accumulated squared gradients [33].

4.2 Results compared with baselines

The DET curves with respect to various baselines and our pro-
posed methods are shown in Figure 2, where “PLDA-300”
stands for the PLDA model with F of rank 300 in (1), “co-
sine” means the cosine kernel presented in [7], and “DCAE-
17 represents the DCAE model with one hidden layer in both
encoder and decoder parts. Obviously, our proposed method
performs much better than PLDA whatever the cost param-
eters are. Table 1 also shows that, compared with PLDA-
250, DCAE-0 achieves 36% and 24% relative improvements
in EER and normalized minimum detection cost (NMDC).

On the other side, it can be seen that DCAE-1 and DCAE-
2 do not outperform DCAE-0 as expected, although their re-
sults are acceptable while compared with PLDA. Actually, for
the sake of convenience, all of the parameters for training the
structure of DCAE with hidden layers are copied from the
well-tuned parameters based on DCAE-0. Besides, the train-
ing set with less than 10,000 samples dose not seem to be
enough for a more complicated structure.

Moreover, to demonstrate the effectiveness of speaker dis-
crimination of DCAE, we arbitrarily single out two sets of
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Fig. 2. DET curves of DCAE, PLDA, and cosine for SRE-10.
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Table 1. Results for SRE-10. The percentages are the relative
improvements over PLDA-250.

Method EER NMDC
Cosine 10.99 0.47
PLDA-250 6.20 0.29
DCAE-0  3.94 (36%) 0.22 (24%)
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Fig. 3. Scatter plot of the results by t-SNE for SRE-10.

sessions from SRE-10, which belong to two different speak-
ers, to be visualized by t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [34]. Figure 3 illustrates the results that t-
SNE maps the corresponding 400-dimensional i-vectors and
the 300-dimensional i-codes into a 2-dimensional plane.

4.3 Observations on DCAE training

We made some observations from the training process of
DCAE-0. First, ceteris paribus, we recorded the validation
results in each training epoch to see the trend of different
learning rates, batch sizes, and L2 weight regularization
penalties (i.e., A in (5)). From Figure 4, it can be seen that,
in most cases, the best parameter usually occurs within 10
training epochs. This property for DCAE training makes the
tuning of hyper-parameters much more tractable.
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Fig. 4. EERs of SRE-08 for various settings of hyper-
parameters with respect to the training epoch in DCAE.
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Fig. 5. Heat map generated from validation results reflecting
EERs of SRE-08 in various settings of a and 5 in (5).

Second, we were also interested in the relationship among
the three objective functions proposed in Section 2. As de-
picted in Figure 5, most of lower EERs occur when «, the
weightiness of speaker identity loss and internal dispersion,
is relatively small. This implies that the underestimation of
the generative aspect of DCAE dose not necessarily help in-
crease the discriminative power of the learning machine.

5 Conclusions

In this paper, we have proposed a framework based on three
kinds of objective functions, which cooperate to make our
model more like a generative model that possesses discrim-
inative power for speaker verification. The framework has
been realized by a neural network-based autoencoder, where
the implementation is tractable for big data. The experiment
results demonstrated the potential of the framework.
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