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ABSTRACT
Multi-session training conditions are becoming increas-
ingly common in recent benchmark datasets for both text-
independent and text-dependent speaker verification. In the
state-of-the-art i-vector framework for speaker verification,
such conditions are addressed by simple techniques such as
averaging the individual i-vectors, averaging scores, or modi-
fying the Probabilistic Linear Discriminant Analysis (PLDA)
scoring hypothesis for multi-session enrollment. The afore-
mentioned techniques fail to exploit the speaker variabilities
observed in the enrollment data for target speakers. In this
paper, we propose to exploit the multi-session training data
by estimating a speaker-dependent covariance matrix and up-
dating the intra-speaker covariance during PLDA scoring for
each target speaker. The proposed method is further extended
by combining covariance adaptation and score averaging. In
this method, the individual examples of the target speaker are
compared against the test data as opposed to an averaged i-
vector, and the scores obtained are then averaged. The pro-
posed methods are evaluated on the NIST SRE 2012 dataset.
Relative improvements of up to 29% in equal error rate are
obtained.

Index Terms— i-vectors, PLDA, multi-session training

1. INTRODUCTION

Speaker verification (SV) is typically addressed as a hypoth-
esis testing problem in which we compare the same-speaker
hypothesis against the different-speaker hypothesis [1]. The
same-speaker hypothesis states that the target speaker is
present in the test recording, while the different-speaker hy-
pothesis rejects the claim. In conventional SV systems, the
target speaker and the test recording are represented by i-
vectors, which are fixed low-dimensional representation of
speech in the audio [2]. I-vector based SV systems often
employ a Probabilistic Linear Discriminant Analysis (PLDA)
classifier to obtain a log-likelihood ratio based score to eval-
uate these hypotheses [3, 4].

Recent SV benchmark datasets, such as the NIST SRE
2012 ([5]), RSR2015 ([6]) and Reddots ([7]), have multiple

audio files to enroll target speakers. In order to exploit multi-
ple examples, various methods have been explored [8, 9]. As
the PLDA scoring framework is a well established back-end
classifier, a majority of these methods target to exploit it in
order to leverage its effectiveness. Generally, such methods
extract an i-vector for each available session. These models
are either compared to the test recording either individually or
after averaging them to obtain one single model for the target
speaker [8, 10]. In the former case, the scores need to be com-
bined (for instance, through simple averaging) [11]. Another
method to obtain a single i-vector for the target speaker is
to pool the sufficient statistics from all training samples [12].
In [13], the PLDA scoring method was extended for speaker
with multiple enrollment utterances, but no improvement was
observed over the methods mentioned earlier. From our expe-
rience with the RSR2015 dataset in [10], averaging the scores
performed better than averaging the i-vectors. Thus, there is
a lack of clarity in the strategy to be selected in such cases of
multi-session enrollment.

With multiple examples for enrollment, all the above
mentioned methods fail to explicitly model the observed
speaker-specific intra-class variability. In this paper, we
show that by carefully modeling the assumptions on the
intra-speaker covariance matrix it is possible to further ex-
ploit multiple enrollment samples for speakers in the existing
PLDA scoring implementations. This is further extended by
adapting intra-speaker covariance matrices for each speaker
in the evaluation set. The advantages of the proposed ap-
proaches primarily lie in the simplicity of the implementation
given the performance improvements that can be achieved for
speakers with multi-session data. Very little adjustment to
the original PLDA approach is required to obtain significant
gains on the SV performance. We show that we can improve
relatively by 29% in terms of Equal Error Rate (EER) with the
proposed approach compared with simple i-vector averaging.

The rest of the paper is organized as follows. Section 2 de-
scribes the baseline i-vector PLDA system. Section 3 presents
our proposed modifications. In Section 4, the experimental
setup and results are given. The conclusions from our results
are given in the final section.
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2. I-VECTOR PLDA FRAMEWORK

The i-vector extractor projects Gaussian mean supervectors
on a low-dimensional subspace called total variability space
(TVS) [2]. The variability model underlying i-vector extrac-
tion is given by

s = m+Tw, (1)

where s is the supervector adapted with respect to a Universal
Background Model-Gaussian Mixture Model (UBM-GMM)
from a speech recording. The vector m is the mean of the
supervectors,T is the matrix with its columns spanning the to-
tal variability subspace and w is the low-dimensional i-vector
representation. In the above model, the i-vector is assumed to
have a standard Normal distribution as prior.

The i-vectors obtained from a speech utterance are further
projected onto a discriminative space using techniques such
as LDA, WCCN [14, 2] and PLDA [3, 15], which together
form the back-end of the i-vector system. Length normal-
ization is also often applied prior to PLDA modeling ([4]) in
order to aggressively deal with the non-Gaussian behavior of
the i-vectors [16]. Using PLDA parameters two i-vectors can
be compared as belonging to the same class or as belonging to
two different classes, thus generating a likelihood ratio (LR)
to score a pair of speech utterances.

2.1. PLDA modelling

While there are several variants of the PLDA algorithm [17],
a generic implementation models the interclass and intraclass
variances as follows

wij = µ+ Fvi +Euij + ϵij, (2)

where wij refers to the i-vector of the jth example of the ith

speaker. The matrices F and E model the interclass and in-
traclass variabilities, respectively. The hidden variable vi is
the class identity and uij explains the deviation from the class
means. The residue ϵij follows a standard normal distribution.

The Gaussian PLDA (GPLDA) approach simplifies the
modelling of interclass and intraclass covariances by subsum-
ing the latter into the residual covariance matrix [4]. The
above model is simplified as follows

wij = µ+ Fvi + ϵij, (3)

where the residue is now modelled by a normal distribution
with mean 0 and diagonal covariance matrix Σ.

An equivalent implementation of PLDA is available in the
Kaldi toolkit [18]. The implementation is based on [15], in
which PLDA is introduced as a natural probabilistic interpre-
tation of LDA. The probabilistic interpretation arises from the
assumptions imposed on the distribution of the hidden vari-
ables. These assumptions lead to estimates of the covariance
matrices, which are then used to compute the projection as in
the case of the conventional LDA algorithm. The interclass

(Φb) and intraclass covariances (Φw) are modelled according
to a shared orthonormal projection matrix A so that

wij = µ+Auij, (4)

where uij follows a normal distribution N (vi, I) with vi be-
ing the class identity. The hidden variable v follows a normal
distribution N (0,Ψ), where Ψ is the interclass covariance
diagonalized by A such that Φb = AΨAT .

In our experience, the GPLDA algorithm and Kaldi’s im-
plementation perform similarly. Thus, we chose to explore
the latter following our i-vector system implemented for the
same toolkit [19]. The methods presented in this paper can be
easily extended to the GPLDA framework as well.

2.2. PLDA scoring

In this section, we describe the PLDA scoring strategy for
speakers with only one training session. The scoring involves
computing the ratio between the likelihood of the test au-
dio and the target speaker sharing the same model, and the
probability that the two i-vectors being compared are inde-
pendent. If wtst is the test i-vector and wtrn is the target
speaker’s i-vector, the former term corresponds to the proba-
bility P (wtst|wtrn), which is obtained by marginalizing the
joint distribution of the enrollment and test i-vectors over a
common identity hidden variable. According to Eq. 4, this is
equivalent to P (utst|utrn), where utst and utrn correspond
respectively to wtst and wtrn. The simplified LR after ignor-
ing common factors is given by

LR = N (utst;utrn, I+ S) /N (utst;0,B) , (5)

where S = Ψ
Ψ+I and B = Ψ+I. We will continue referring to

only the projected i-vector u and ignore the original i-vector
w in the rest of the text.

2.3. Multiple i-vector enrollment

In case of multiple samples for enrollment, the numerator in
Eq. 5 is naturally extended from the definition of joint prob-
abilities of i-vectors. The means and covariance matrix are
modified as follows

LR = N
(
utst;Snutrn,

1

n
Sn + I

)
/N (utst;0,B) , (6)

where Sn = nΨ
nΨ+I and n is the number of training samples

for the target class, and utrn is the average over training sam-
ples. This type of scoring is termed multisession scoring in
this paper. While the above equation is a natural extension of
the scoring strategy by definition (Eq 4), we observe the bias
in the covariance of the joint distribution. We also observe
that in case of multiple i-vectors the estimate of this covari-
ance can be adapted to the observed intra-speaker covariance,
thereby obtaining a speaker-dependent intra-speaker covari-
ance matrix.
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2.4. Baseline methods

In this subsection, we discuss two baseline strategies to uti-
lize multiple enrollment samples for a target speaker: i-vector
averaging and score averaging. In the former technique, the
i-vectors of a speaker are averaged. In Eq. 6, this corresponds
to ignoring the number of examples.

In score averaging, the multiple examples are combined
during scoring. The scores are obtained for each training ses-
sion from Eq. 5 as though they belong to different speakers.
The individual scores are then averaged to obtain one single
score for the target speaker.

3. PROPOSED PLDA SCORING

Our proposed methods focus on adapting the intra-speaker
covariance based on the observed i-vectors for the target
speaker. In order to do this, we first observe that the intra-
speaker covariance for a speaker with n examples is biased.
Thus, at first we simply adjust the intra-speaker covariance as
Sn + I. The LR is re-defined as

LR = N (utst;Snutrn,Sn + I) /N (utst;0,B) . (7)

This method is referred to as covariance scaling.
With the above scoring strategy, we propose to adapt the

intra-class covariance based on the i-vectors observed. Let
for a target speaker, the observered i-vector projections be
{u1,u2, · · · ,un}. The observed intraclass covariance is

Ψ̂ =
1

n

n∑
k=1

(uk − Snutrn)
2
. (8)

Therefore, Eq 7 is rewritten for covariance adaptation as

LR = N
(
utst;Snutrn,Sn + I+ Ψ̂

)
/N (utst;0,B) .

(9)

In all the strategies discussed above, the mean of the tar-
get speaker’s distribution is unchanged. However, in many
cases such averaging can be aggressive. The mean could lead
to many examples modelled poorly by the intra-speaker vari-
ance, especially in the baseline system. Such cases occur
when there are training samples available from varied con-
ditions. Thus, the effect of using multiple examples can be
sub-optimal. Therefore, we propose to combine the covari-
ance adaptation strategy and score averaging. In this tech-
nique, we compare individually the test audio with each of
the enrollment i-vectors. The LR is re-defined as

LR =
1

n

n∑
i=1

N
(
utst;ui,Sn + I+ Ψ̂

)
/N (utst;0,B) .

(10)

The equal weight for each example in Eqs. 9, 10 could
lead to poor samples to affect the result. For instance, when

the input samples vary considerably in length, equal weight to
both short and long utterances could impact the system perfor-
mance when comparing with long test recordings. To handle
such scenarios, we propose an automatic weighting scheme
based on the target speaker distribution.

The weight γi for sample i of the target speaker is given
by

γi =
N (ui;Snutrn,Sn + I)∑n
j=1 N (uj;Snutrn,Sn + I)

. (11)

The weights replace the uniform weights in Eq. 10 and
filter outliers by controlling their impact on the final score.
These weights also reflect the influence of individual samples
on all the scoring strategies, including baseline PLDA scor-
ing, mentioned earlier. By applying weights during covari-
ance estimation, we aimed to control the influence of each
training example for the speaker based on the intra-speaker
variance observed in the development dataset.

4. EXPERIMENTS

Speaker verification experiments are conducted on the female
subset of the NIST 2012 SRE data, following the official pro-
tocol [20]. System performance is evaluated on conditions 2
and 5 (similar to [21]), labelled as cond2 and cond5 in this ar-
ticle, and results are given as EERs and minDCF (minimum
Decision Cost Function). While cond5 involves test record-
ings with added noise, cond2 does not.

4.1. I-vector system configuration

The front-end used 20 MFCC features along with delta
and acceleration parameters, extracted every 10 ms using
a window of 30 ms. They were further processed through
a short term Gaussianization module with a context of 300
frames [22].

The Fisher English Part I and II data were used to train the
UBM-GMM system and the T-matrix. LDA and PLDA pa-
rameters were trained with the following datasets: The NIST
datasets - SRE 2004, 2005, 2006, 2008 and 2008 extended,
Switchboard Part II and Part III, and Switchboard Cellular
Part I and II.

A UBM-GMM with 2048 components and i-vector ex-
tractor of 400 dimensions were trained. The i-vector dimen-
sion was reduced to 150 after LDA, followed by length nor-
malization prior to PLDA scoring.

The Kaldi toolkit [18] was used for LDA and PLDA train-
ing. A standard i-vector extractor was implemented for Kaldi
as well (see footnote 1 in Page 2), based on the baseline sys-
tem described in [23].

4.2. Results

The results are given in Table 1. The EERs and minDCFs of
all the systems presented earlier are compared. The minDCF
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is computed with a prior probablity of 0.01 for the target
speaker. As a part of our baseline results, we consider three
techniques: i-vector averaging, score averaging and multises-
sion scoring (Eq. 6). In both conditions, i-vector averging
performs the best among all three baslines with EERs of 2.4%
and 3.0% on cond2 and cond5, respectively. These results
are better than score averaging by about 14% and 6% relative
in EER. The minDCFs of the i-vector averaging system also
confirm its superiority over the other two baseline techniques.
The multisession scoring strategy perfoms the worst among
the three baselines.

Next, the performances of the proposed systems are pre-
sented. First, we test the validity of covariance scaling (Eq. 7).
There is a considerable improvement from the baseline mul-
tisession scoring technique to justify the removal of a bias
from the intraspeaker variance estimate. The EERs improves
by about 33% and 31% relative on cond2 and cond5, respec-
tively. With respect to i-vector averaging, the improvements
in EER are approximately 20% and 22%, respectively, and the
improvements in minDCF are about 12% and 28%. The sec-
ond system applies variance adaptation (Eq. 9). There were
marginal gains in EERs and DCF from the system using vari-
ance scaling.

The covariance adaptation with weights (γi) in Eq. 11 is
termed Weighted Variance adaptation in Table 1. While there
is a decrease observed in the performance, we note that the
number of examples used per speaker is significantly lesser
than the actual number of training samples available. For in-
stance, when the number examples per speaker exceeds 5, an
average of 20% of the samples have γ values over 0.01. One
major reason is attributed to the peaky nature of distribution
assumed in Eq. 5. The results confirm that these models still
do not fully exploit the multisession enrollment condition.

Our final results combine score averaging with variance
scaling and variance adaptation as defined in Eq. 10. The
former is presented to justify the proposed adaptation proce-
dure. When averaging scores obtained from individual sam-
ples with covariance scaling (labelled as Variance scaling +
Score averaging), there is once again degradation between 4%
to 5% relative in EER on the two conditions when compared
with the variance scaling procedure. However, significant im-
provements are achieved when the individual scores after ap-
plying variance adaptation (labelled as Variance adaptation +
Score averaging) are averaged. When compared to the base-
line system using i-vector averaging, relative improvements
in EER of 28% and 29% for cond2 and cond5, respectively,
are observed. The corresponding relative improvements in
DCFs are the same as that obtained with simply scaling the
variance. Overall, systems using simple variance adaptation,
that is, when the samples have uniform weights, outperform
all other variants.

Table 1. Results on the NIST 2012 dataset for the all scoring
methods presented in this work. The Equal Error Rate (in
%)/minimum Decision Cost Function are reported.

Method cond2 cond5

Baseline

I-vector averaging 2.4/0.24 3.0/0.28
Score averaging 2.8/0.38 3.2/0.35
Multisession scoring 3.0/0.39 3.5/0.46

Proposed

Covariance scaling 2.0/0.21 2.4/0.24
Covariance adaptation 1.9/0.20 2.4/0.23
Weighted Covariance adaptation 2.1/0.22 2.5/0.26
Covariance scaling + Score averaging 2.1/0.25 2.5/0.29
Covariance adaptation + Score averaging 1.7/0.21 2.1/0.24

5. CONCLUSION

In this paper, adaptation of the intra-speaker covariance ma-
trix for PLDA scoring was proposed in order to take advan-
tage of the multi-session enrollment conditions. It is observed
that simple scaling of the covariance matrix can lead to perfor-
mance benefits. Relative improvements in EER of about 20%
and 22% are obtained on two conditions of the NIST SRE
2012 dataset. The intra-speaker covariance is also adapted
with the enrollment data to obtain speaker-dependent covari-
ance. Although such variance adaptation does not directly
lead to performance gains, combining it with score averaging
resulted in relative improvements of up to 29% in EER when
compared to the baseline system using simple i-vector aver-
aging. We also explored probabilistic weighting of individ-
ual examples of a target speaker for PLDA scoring. While it
did not contribute to any performance improvements, we ob-
served that very few examples contribute to the speaker model
when i-vectors are averaged. This justifies the performance of
score averaging after variance adaptation.
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