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ABSTRACT�

The universal speech attributes for speaker verification (SV) 
are addressed in this paper. The aim of this work is to 
exploit fundamental characteristics across different speakers 
within the deep neural network (DNN)/i-vector framework. 
The manner and place of articulation form the fundamental 
speech attribute unit inventory, and new attribute units for 
acoustic modelling are generated by a two-step automatic 
clustering method in this paper. The DNN based on 
universal attribute units is used to generate posterior 
probability in total variability modelling and i-vector 
extracting for the speaker recognition procedure. 
Furthermore, Gaussian mixture models (GMMs) are used to 
fit the distribution of the features associated with a given 
context-dependent attribute unit to improve performance. 
The experiments are carried out on the core test from the 
NIST SRE 2008 corpus; the proposed system can obtain 
better performance than all other state-of-the-art systems. 
 

Index Terms Speaker verification, DNN, universal 
speech attributes

1.�INTRODUCTION�
 
In recent years, i-vector [1] based speaker verification 
systems have become very popular because of their good 
performance and ability to compensate for channel 
variations. The i-vector algorithm provides a method to map 
a speech utterance to a low dimensional vector while 
retaining the speaker identity. Within this i-vector space, 
variability compensation methods such as linear 
discriminant analysis (LDA) [2] and within-class covariance 
normalization (WCCN) [3] are performed to reduce channel 
variability. Until now, the best performance has been 
obtained by modelling i-vector distributions through a 
generative model known as probabilistic linear discriminant 
analysis (PLDA) [4, 5, 6], which is adopted as a backend 
classifier in this paper. 

DNNs have clearly shown their superiority over 
GMMs for automatic speech recognition (ASR) [7, 8]. 
Methods combining recent advances in DNNs with speaker 

verification have attracted resear
12]. In [13, 14], a generalized i-vector framework is 
proposed in which the decision tree senones (tied triphone 
states) of a DNN model in the ASR system are employed to 
generate posterior probabilities rather than the unsupervised 
GMM-universal background model (UBM). In [15], S. 
Cumani et al. analysed the benefits of using different 
settings for the number of the DNN output states and for the 
number of Gaussians per DNN state, and they achieved 
obvious improvement over [14]. We adopted similar 
techniques in this paper. 

There is growing interest in exploiting the 
discriminative properties of universal speech attributes in 
speech processing [16, 17, 18, 19, 20, 21], especially in 
language recognition. In paper [22], we first investigated 
universal speech attributes for speaker recognition. The 
DNN/i-vector framework is adopted in speaker modelling. 
The difference between phoneme-based systems and the 
proposed system in paper [22] is that universal attribute 
units are used to replace phonemes in DNN acoustic 
modelling. Universal attribute units are generated by 
referring to the English phoneme set. Comparative results 
with the phoneme-based DNN/i-vector system have been 
obtained in [22]. 

One limitation of the phoneme-based framework is 
lack of universal characterization across different speakers. 
In this paper, we improve the speaker recognition system in 
two aspects: the more elaborate generation of universal 
attribute units and the use of GMMs to fit the distribution of 
features associated with a given context-dependent attribute 
unit in total variability modelling. New attribute units are 
generated by a two-step automatic clustering method. The 
first step is the same as in paper [22]. The manner and place 
of articulation are first combined to generate enough 
universal speech attribute units, and triple attribute states are 
tied in content-dependent acoustic modelling. In the second 
step, different tied triple states are merged to new speech 
attribute units by means of automatic clustering in 
accordance with a likelihood calculation. In total variability 
modelling, we adopted the above hybrid DNN/GMM system, 
balancing attributive and acoustic precision to verify the 
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effectiveness of universal speech attributes for speaker 
verification [15]. 

The remainder of this paper is organized as follows. In 
section 2, we summarize the DNN/GMM approach. In 
section 3, we describe how to obtain effective universal 
speech attribute units. In section 4, we present results using 
attribute-based DNN/GMM systems on the NIST SRE 2008 
corpus. Finally, we conclude our paper in section 5. 
 

2.�DNN/I­VECTOR�
�
2.1.�DNN/i­vector�Framework�
�
In the i-vector framework, each utterance is represented by 
its zeroth- and first-order Baum-Welch statistics extracted 
with UBM. In paper [14], Y. Lei et al. made an important 
modification to estimate the statistics. They adopted an ASR 
DNN model to generate the zeroth-order statistics of feature 
vector . In the DNN/i-vector framework, UBM can be 
trained in a supervised fashion. In this paper, we use a 
DNN/i-vector framework similar to [14]. The only 
difference is our replacement of phoneme-based DNN with 
the proposed attribute-based DNN. The flowchart of the 
attribute-based DNN/i-vector system is shown in Fig. 1.  
 

 

Figure� 1. The flow diagram of DNN/i-vector framework 
attributes 
 
2.2.�HYBRID�DNN/GMM�
�
As noted in paper [15], DNNs are trained discriminatively, 
and the separation surface among its states is more complex 
than that provided by a single Gaussian. For these reasons, 
the effects of the granularity of the attributive DNN model 
and of the precision of the corresponding GMM models 
should be taken into consideration. To increase the accuracy 
of the distribution of the acoustic, S. Cumani et al. proposed 
to augment the number of Gaussians per merged state [15]. 
By combining the supervised and unsupervised methods, the 
balance of the attributive and acoustic precision is achieved. 
GMMs are also used to fit the distribution of features 
associated with a given context-dependent attribute unit in 
total variability modelling in this paper. 
 
3.�SPEECH�ATTRIBUTES­BASED�SV�SYSTEMS�

 

3.1.�Universal�speech�attributes�
 
The set of universal speech attributes is listed in Table 1 and 
include the place and manner of articulation [17]. The 
number of manners and places of articulation are 11 and 10, 
respectively, which are much fewer than the phoneme set 
(approximately 46 in English ASR) in the conventional 
phonetic LVCSR system. In LVCSR acoustic model 
training, context-dependent (CD) models are always 
adopted to improve recognition accuracy. Even when 
context-dependent models are used, the number of attribute 
units is not sufficient for good recognition performance. 
Accordingly, it is unwise to separately use place and manner 
of articulation in acoustic models for speaker verification 
systems. To increase the accuracy of the modelling units, we 
propose to generate attribute units with the following two 
steps: firstly combining place and manner of articulation 
directly, and secondly generating speech attribute units by 
automatic clustering. 
 
Table� 1. Universal Speech Attributes list for manner and 
place of articulation 

manner affricate, fricative, nasal, vowel, voice-stop, 
unvoiced-stop, glide, liquid, diphthong, sibilant 

place alveolar, alveo-palatal, dental, glottal, high, 
bilabial, labio-dental, low, mid, palatal, velar 

 
3.1.1. Combine Place and Manner of articulation directly
The place and manner of articulation are combined to 
increase the number of attribute units and to take advantage 
of both in representing the pronunciation habits of speakers. 
Because there is a direct mapping between phonemes and 
attribute units, we can use phonemes to generate attribute 
units. We look up the corresponding place and manner of 
articulation of a phoneme. If they are different from those of 
other phonemes, we define a new attribute unit. For example, 
the manner and place of phoneme /ah/ are /vowel/ and /mid/, 
respectively, so we define a new attributes unit /mid_vowel/. 
The English phone set is used in our experiments, and 23 
universal speech attribute units are obtained by combining 
place and manner of articulation. For convenience, we call 
these units CPMs. 
 
3.1.2. Generate New Speech Attribute units by Automatic
Clustering
CPMs can be used as acoustic modelling units in DNN 
training, but speaker recognition performance of the DNN/i-
vector system based on CPMs is not satisfactory [22]. We 
aim to find better attribute modelling units, under which the 
acoustic model can be more accurate and speaker 
recognition accuracy can be improved. We use an automatic 
clustering approach to re-generate speech attribute units on 
the basis of CPMs. The detailed procedure is as follows. 
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1) The context-dependent hidden Markov model (HMM) 
based on CPMs is trained. We use tri-CPMs in the 
same way as tri-phones in conventional phoneme-
based HMM systems, and more than  tri-CPMs are 
obtained by counting training transcriptions. In 
phoneme-based systems, there exist three or more 
HMM states for each phoneme. Because CPMs are 
only intermediate units in our experiment, it is 
unnecessary to model CPMs in the traditional way. 
Each CPM is modelled by only one HMM state. Our 
purpose is to cluster these tri-CPMs into universal 
attribute units through data clustering methods.  

2) After force alignment, the statistics of tri-CPMs can be 
modelled by a Gaussian distribution. As the number of 
tri-CPMs is large, it is a time-consuming process to 
cluster these nodes using the pairwise merging process 
in the following step. A K-means algorithm is first 
used to cluster the large number of nodes into a pre-set 
number of clusters. The mean of each Gaussian is used 
as the input feature in K-means clustering. After K-
means clustering, the statistics of the same cluster are 
merged, and a Gaussian distribution is estimated for 
each merged cluster. After the K-means procedure, the 
number of clusters is reduced to 500 in our experiment. 

3) After the K-means step, each cluster is modelled with a 
Gaussian distribution, where  { , }k k   are the mean 
vector and covariance matrix of the k-th Gaussian 
component. If kn is the number of the observation in k-
th cluster, the log likelihood of the cluster would be  

 1 log((2 ) || ||) 1
2

d
k kL n ,                (1) 

where d is the dimension of the feature vectors. Two 
clusters j and k are merged if 

( )j k j kL L L                              (2) 
is minimum for all j and k, where j kL  is the likelihood 
of the cluster formed by merging cluster j and cluster k. 
After this step, we now have K-1 clusters. This 
pairwise merging process is repeated until we have I 
clusters. We define these clusters generated by 
automatic clustering (CAC) as new attribute units. 

 
3.2.�CAC�units­based�acoustic�model�
�
The aforementioned CAC units are used in the following 
acoustic modelling exactly as phonemes are used in state-of-
the-art ASR systems. Content-dependent modelling is 
adopted to improve performance. As we lack linguistic 
knowledge for CAC units, we cannot design a suitable 
question set for state tying. In this work, we generate a 
question set using the approach described in [23]. Tied triple 
states are obtained using decision trees. Standard HMM-
GMM systems are used to generate the initial state 
alignments to train DNNs. Briefly, the training procedure of 
CAC units-based acoustic model is identical to that of the 
conventional phoneme based systems. 

�
4.�EXPERIMENTS�AND�RESULT�ANALYSIS�

 
4.1.�Speaker�verification�system�description�
�
The experiments are carried out on common conditions 6, 7 
and 8 of the NIST SRE 2008 database. The training and test 
conditions of these three common conditions are as follows. 

C6: All trials involving only telephone speech in 
training and test. 

C7: All trials involving only English language 
telephone speech in training and test. 

C8: All trials involving only English language 
telephone speech spoken by a native U.S. English 
speaker in training and test. 
 

4.2.� Acoustic� model� training� based� on� CACs� and�
phonemes�
 
To obtain a fair comparison between CAC units-based DNN 
and conventional phoneme-based DNN, both HMM-GMM 
and HMM-DNN models are trained using approximately 
300 hours of clean English telephone speech from 
Switchboard data sets. Except for the output layer, these two 
DNNs have identical architectures. The inputs of DNNs are 
429-dimensional features, corresponding to 39-dimensional 
perceptual linear predictive (PLP) features within a context 
window of 11 (5+1+5) frames. There are 6 hidden layers 
with 2048 hidden units in each layer. To make the 
characteristics conform to a Gaussian distribution, the 
features are pre-processed with mean and variance 
normalization (MVN). The cross entropy criterion is used to 
train the DNN model. 
 
4.3.�System�configurations�for�speaker�recognition��
 
The equal error rate (EER) and minimal detection cost 
function (DCF) are used to evaluate the performance of the 
systems. 

PLP features are used in speaker recognition systems. 
Each speech signal is parameterized by the 13th order PLPs 
and their first and second derivatives. Further processing 
including relative spectral (RASTA) filtering, voice activity 
detector (VAD), cepstral mean subtraction (CMS) and 
Gaussianization are applied to all PLPs.  

NIST SRE 2004, 2005, 2006 and switchboard corpora 
are used to train the UBMs. After the UBM is obtained, the 
conventional total variability matrix training and i-vector 
extraction procedures are performed. The total variability 
matrix with rank 400 is trained using NIST SRE databases 
before 2008. After extracting the i-vector, further processes 
including LDA, WCCN, whitening and length normalization 
are applied to improve performance. The PLDA algorithm is 
used as the backend classifier, where the sizes of speaker 
and channel matrices are 150 and 10, respectively. 
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4.4.�DNN/i­vector�
�
The first experiment is conducted to compare the 
unsupervised GMM-UBM/i-vector system with the 
supervised DNN/i-vector systems. The performance of the 
unsupervised GMM-UBM/i-vector system with 2048 
components is shown in the first row of Table 2. The second 
row of Table 2 stands for the phoneme-based DNN/i-vector 
system, where the DNN model consists of 3992 states. The 
last two rows of Table 2 represent the CAC-based DNN/i-
vector system, where the DNN model consists of 3979 states 
when I = 50 and 3996 states when I = 80.  
 
Table�2. Experimental results for NIST SRE 2008 based on 

DNN/i-vector framework (EER% / minDCF08*1000) 
 

Model I C6 C7 C8 
acoustic GMM --� 6.41/30.4 2.87/15.8 2.64/14.3 
phoneme DNN -- 6.50/31.9 2.04/10.8 1.81/10.0 

attribute DNN 
50 6.53/33.5 1.90/11.3 1.67/9.89 
80 6.65/34.2 2.01/11.8 1.67/9.97 

 
Comparing the performance of these three systems, we 

can observe that the attributive- and phonetic-based DNN/i-
vector systems achieve better performance than the acoustic 
GMM-based system on language matched conditions (i.e., 
C7 and C8). The unsupervised GMM system achieves better 
performance on the multilingual condition (i.e., C6). A 
reasonable explanation is that DNNs can provide more 
accurate posteriors than the unsupervised GMM on 
language matched conditions and vice versa. In addition, we 
adopt different clustering sizes of CAC units for comparison, 
such as I = 50, 80. Their performances are shown in Table 2. 
We can observe that the system with CAC number 50 is 
slightly better than the system with CAC number 80. 
Furthermore, compared to the phoneme-based system, a 
slight improvement is obtained by the CAC-based system on 
some conditions. This finding confirms that CAC is an 
effective presentation of universal speech attributes. 
 
4.5.�Hybrid�DNN/GMM�
 
To better analyse the contribution of the attributive 
information provided by the attributive DNN model with 
respect to the accuracy of acoustic GMMs, different settings 
for the number of the DNN output states and for the number 
of Gaussians per DNN state are compared. 

In this section, automatic clustering in accordance with 
a likelihood calculation is adopted to reduce the number of 
states, which is analogous to [23]. For fair comparison, 
approximately 4000 DNN states (3996 CAC states and 3992 
phoneme states) are merged to 256/128, while the number of 
Gaussians per state is set to 8/16, respectively. In the 
experiments, the product of number of DNN output states 

and the number of Gaussians per DNN state are set to 2048. 
Based on the experimental results in the previous section, 
the size of the CAC units is set to 50 in this section. The 
results of the CAC- and phoneme-based DNN/GMM 
systems are listed in Table 3. 
 
Table�3. Experimental results for NIST SRE 2008 based on 

DNN/GMM framework. We reduce the number of DNN 
states by automatic clustering. (EER% / minDCF08*1000) 

 
Model DNN GMM C6 C7 C8 

CAC 256 8 5.85/26.9 2.00/10.4� 1.47/8.59 
128 16 5.62/27.3� 2.09/10.9 1.64/8.66 

phon-
eme 

256 8 5.98/28.6 2.06/11.1 1.66/8.84 
128 16 5.71/27.6 2.03/11.3 1.71/9.38 

 
It is interesting to observe that the best performance in 

all conditions is obtained by CAC-based DNN/GMM 
systems. The results have proved our previous hypothesis 
that universal speech attributes are more fundamental across 
different speakers than phonemes for speaker verification. 
Compared to performance of DNN/i-vector systems in the 
previous section, obvious improvements are obtained. The 
reason is that the balance of attributive and acoustic 
precision can be more effective. 
 

5.�CONCLUSIONS�
 
One limitation of the phoneme-based framework is lack of 
universal characterization across different speakers. This 
paper presents a method to generate CAC units that define 
universal speech attributes precisely using automatic 
clustering in accordance with K-means and likelihood 
calculations. In the hybrid DNN/GMM framework, the 
system balancing attributive and acoustic precision achieves 
better performance on the core conditions of NIST SRE 
2008 than existing systems. Our experiment confirms that 
CACs are an effective representation of universal speech 
attributes and are more fundamental than phonemes. It 
benefits from the fact that universal speech attributes are 
more related to the pronunciation habits of a person than to 
speech content. 
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