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ABSTRACT
In this work, we investigate speaker-specific filter banks for
text-independent speaker verification. The proposed method
performs an heuristic search for the best filter-bank configu-
ration using the Artificial Bee Colony (ABC) algorithm and a
proper fitness function for the standard i-vectors/PLDA-based
speaker verification system. Furthermore, filter-bank decorre-
lated amplitudes are used instead of the cepstral coefficients
produced by Discrete Cosine Transform (DCT). In the ex-
periments, the proposed method is compared to standard Mel
and linear scales in both cases where the decorrelation is per-
formed using DCT and high-pass filtering. The comparison
is performed on the MIT Mobile Device Speaker Verification
Corpus in a gender-dependent trial scheme. The proposed
method outperformed the baseline systems in almost all the
test sets for both genders. Performance gains of 4.6% and
26.0% are achieved for male and female speakers, respec-
tively.

Index Terms— Speaker verification, filter bank optimiza-
tion, artificial bee colony algorithm.

1. INTRODUCTION

In recent years, the Speaker Recognition (SR) community
has predominantly used the i-vector representation [1] of
speech utterances for text-independent speaker verification.
This technique maps any utterance to a fixed low dimen-
sional representation preserving useful information about the
speaker and it is based on the Factor Analysis Decomposi-
tion of the correspondent Gaussian Mixture Model (GMM)
supervector. Although i-vectors can be effectively compared
using the cosine distance metric, speaker and session vari-
ability compensation is also performed by post-processing
techniques such as Gaussian and heavy-tailed Probabilistic
Linear Discriminant Analysis (PLDA) [2, 3].

Despite the existence of several techniques proposed
to represent, model or compensate speech signals, Mel-
Frequency Cepstral Coefficients (MFCCs) have always been
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the most dominant feature extractor used in speaker recogni-
tion. They were first proposed for speech recognition and is
based on the codification of the spectral information of the
signal on the Mel scale in order to mimic human auditory
perception. The codification of a short-term speech segment
is performed by using a Mel-scale filter bank and applying
the Discrete Cosine Transform (DCT) to the logarithm of
the filter bank energies to compute a set of uncorrelated fea-
tures. Since the spectral resolution of the Mel scale becomes
lower as frequency increases, high frequency information is
suppressed on the MFCCs extraction. However, the high
frequency region of speech reflects important physiologi-
cal characteristics of the speaker associated to the structure
of the vocal tract, such as its length [4]. For this reason,
some studies show that the use of linearly spaced filters on
the cepstral coefficients extraction, Linear Frequency Cep-
stral Coefficients (LFCC) outperforms conventional MFCCs
in some cases (e.g. on nasal and non-nasal consonants re-
gions of speech [5] or in whispered speech [6]). Recently,
MFCCs and LFCCs performances were compared in the
NIST Speaker Recognition Evaluation (SRE) 2010 extended-
core task [7] using the i-vectors representation with PLDA
post-processing. LFCCs outperformed MFCCs in most con-
ditions, mainly due to its better performance in the female
trials1.

Based on the uniqueness of the characteristics of the struc-
ture of the vocal tract of individuals and their reflection on the
speech spectra, it is expected that distinct frequency warp-
ing functions may be employed to extract more discrimina-
tive features for each person. Following this assumption, sev-
eral studies were conducted on finding an optimal frequency
warping function not only for speaker recognition but also for
speech recognition [8, 9], speaker diarization [10], and, more
recently, signal classification [11]. In [12], optimal frequency
warping functions and classifier parameters were estimated
by a Generalized Probabilistic Decent (GPD) optimizing pro-
cedure based on Minimum Classification Error (MCE) crite-
ria. Even though a common speaker-independent frequency

1The shorter vocal tract length of females results in higher formants fre-
quencies in their speech signals.
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warping function was used, better results than those obtained
with MFCCs and LFCCs were achieved when speaker iden-
tification techniques based on GMMs and vector quantiza-
tion (VQ) were used. More recently, Charbuillet et. al pro-
posed a method that optimizes the fusion of two GMM-based
speaker verification systems with different cepstral features
defined by complementary linear filter banks [13]. The opti-
mal configurations of the filter banks were estimated using an
evolutionary algorithm and defining an optimization criterion
based on the complementary of the log likelihoods produced
by the GMM systems. Once again, the optimization process
did not take into account the existence of particular optimal
frequency warping functions, and fixed filter banks configu-
rations were employed for different speakers.

In this work, we investigate the optimization of speaker-
specific filter banks for text-independent speaker verification.
Here, a filter bank is parameterized by the centers of trian-
gular filters, whose bandwidths are defined by the centers of
their neighbors. Similarly to [13], an heuristic search algo-
rithm inspired in nature is used in the optimization process.
The Artificial Bee Colony (ABC) algorithm [14] is individu-
ally employed to find the correspondent optimal filter banks.
ABC algorithm is a relatively new technique proposed for
numerical optimization with proven effectiveness when com-
pared to other heuristic search algorithms [15]. Differently
from previous works, the proposed optimization method is
designed to minimize the verification errors of the standard
i-vectors/PLDA-based system using a proper fitness function.
This method is described in Section 2. Furthermore, instead
of extracting uncorrelated features using DCT, our proposed
method relies on the decorrelation of the log filter bank am-
plitudes by high-pass filtering, which produces features with
specific sub-bands information. Decorrelated filter bank am-
plitudes/energies were successfully used in the past for robust
speech [16, 17] and speaker [18] recognition, and it has been
shown that they achieve equivalent or better performance than
MFCCs [17]. Intuitively, the impact of the optimization of fil-
ter banks may be greater when features with specific sub-band
information are used. In the experiments (Section 3), we com-
pared the proposed method to conventional Mel and linear
scaled filter banks using the MIT Mobile Device Speaker Ver-
ification Corpus (MIT-MDSVC) [19], which presents trials
with high session variability from background noise. Gender-
dependent comparative results are also presented for both sce-
narios when decorrelation is performed by high-pass filtering
and DCT.

2. PROPOSED FILTER BANK OPTIMIZATION

The Artificial Bee Colony (ABC) algorithm is an optimizer
proposed for multivariable continuous functions inspired by
the intelligent foraging behaviour of a bee colony. In the
ABC algorithm, each solution of the problem is represented
by a food source, which is defined by a d-dimensional real-
valued vector, and the fitness of the solution corresponds to

the amount of nectar of the associated food source. There
are three groups of foraging artificial bees, which are refer-
enced as employed bees, onlookers and scouts. Employed
bees are responsible for exploiting the current food sources
and giving information about their quality (amount of nec-
tar). Onlooker bees wait in the hive and decide on a food
source to exploit based on the quality information shared by
the employed bees. The random search of new food sources
is performed by the scouts. The algorithm starts with a popu-
lation of randomly generated solutions and three steps cor-
responding to the behaviour of the bees are repeated until
a termination criterion is met. The parameters of the ba-
sic ABC algorithm are: the number of the food sources Nf ,
which is equal to the number of employed and onlooker bees
(each one associated to one food source); the number of tri-
als after which a food source is assumed to be abandoned,
which is referred to as limit; and the termination criterion.
Let si = {si1, si2, ..., sid} represent the ith food source of
the population and ti represents its exploitation trials counter.
The steps iteratively executed by the algorithm are defined as
follows:

- Employed bees step: each employed bee generates a
new solution (̂si) in the neighborhood of its current position:

ŝij = sij + φij(sij − skj), (1)

where j and k are randomly chosen dimension and food
source indexes, respectively, with k 6= i. φij is a uniformly
distributed real random number in the range [−1, 1]. If the
altered dimension exceeds the predetermined boundaries of
possible solutions, it is set to an acceptable value, as the up-
per/lower boundary value. Here, as the solutions represent
filter bank configurations (centers of the filters) the dimen-
sions are sorted. Furthermore, the dimensions are limited
from zero to half of the sampling frequency. A greedy selec-
tion is then employed among them. If the fitness of ŝi is equal
or better than that of si, ŝi replaces si in the population and ti
is reset to zero. Otherwise si is retained and ti is incremented.

- Onlooker bees step: Each onlooker bee evaluates the
nectar information from all the employed bees and selects a
food source to exploit. The selection consists of a roulette
wheel scheme in which the size of each slice (probability of
selection, pi) is proportional to the fitness value of the corre-
spondent solution: pi = fiti/

∑
i fiti.

In each exploitation, positions and trials counters of the
food sources are defined as the same as the previous step.

- Scout bees step: each scout bee selects a food source
to be abandoned based on the trials counters (ti) which were
updated during search. Solutions that reached the limit pa-
rameter are replaced by new randomly generated food sources
with ti reset to zero. In the basic ABC algorithm, at most one
scout bee performs the replacing at each cycle.

In each iteration of the algorithm, the best solution found
so far is memorized as the final solution. Termination criteria
include: reaching the maximum number of iterations; reach-
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ing the maximum fitness value; or reaching the maximum
number of iterations without improvements (convergence cri-
terion). Our goal here is to find the most discriminative con-
figuration of the filter banks for a certain enrolled speaker,
S. From the assumption that the best fitness function is the
one that most closely resembles the final system, we designed
a function that estimates the accuracy of the i-vectors/PLDA
framework on the verification task.

Given the training speech samples from S and from im-
postor speakers different from S, the function computes a
fitness value for a given solution representing the frequency
centers of the triangular filters presented in the bank. Speech
sentences are divided into frames of 20 ms at a frame period
of 10 ms. A feature vector consisting of sub-band compo-
nents derived from the decorrelated filter bank amplitudes
[20, 16, 17] is extracted from each frame. As in [18], a filter
bank with 21 triangular filters is used to obtain the log filter-
bank amplitudes, (a1, a2, ..., a21). They are decorrelated by
applying a high-pass filter H(z) = 1− z−1 over ai, resulting
in 20 decorrelated amplitudes. The resulting feature vector
is composed by these amplitudes with the addition of their
first-order delta components. Furthermore sentence-level
mean removal are also applied for channel compensation.
From all the vectors extracted from the training utterances,
gender-dependent Universal Background Models (UBMs)
are estimated via Expectation-Maximization (EM) algorithm
and combined to compose a single UBM, which is used in
the i-vectors extraction from the speeches. For the compu-
tation of the fitness value, the i-vectors are equally divided
into two distinct sets presenting different sentences from S
and from the impostors. While the first set is used to train
an i-vectors/PLDA system for speaker S, the second is used
to produce the true/false positive scores. In order to avoid
overfitting, the division of the speech samples is performed
several times and it is maintained fixed during all the search
process. A single set of true/positive scores is produced by
joining all the scores produced by different data divisions. A
single Detection Error Tradeoff (DET) curve is produced and
the final fitness value is defined by 1 − EER, where EER
refers to the achieved Equal Error Rate.

3. EXPERIMENTS
The goal of our experiments is to compare the use of the Mel,
linear (Lin) and the proposed ABC-optimized scales in the
feature extraction phase for the verification task using the i-
vectors/PLDA system. The use of the scales is evaluated in
both cases when the uncorrelated coefficients were produced
by the DCT (as the conventional MFCCs and LPCCs extrac-
tions) and by the use of the high-pass filtering (as presented in
Section 2). The evaluations were conducted using speeches
from the MIT Mobile Device Speaker Verification Corpus
(MIT-MDSVC) [19]. The speech data were collected using
a handheld device with a sampling frequency of 16 KHz. The
data collection consists of two unique sets of enrolled users

and dedicated impostors. The set of enrolled users was col-
lected during two different sessions and the impostor set was
obtained in a single session. Both sets provide environmen-
tal noise variability since each session occurred in three dif-
ferent locations: a quiet office, a mildly noisy lobby and a
busy street intersection. Each speaker recorded 18 utterances
per location giving 54 speech sentences per session. The en-
rolled users set presents 48 individuals (22 female and 26
male) while the impostors set is composed by 40 individu-
als (17 female and 23 male). In this work, the training data
consists of the utterances from the first session recorded in
a quiet office. Three test sets were considered, each corre-
sponding to a different location and including speeches from
the second session and the impostors set. The systems were
tested following a gender-dependent scheme where no cross-
gender trials were performed (since they are less challenging
as discussed in Section 1). Consequently, 18 true trials were
performed for each enrolled speaker while 414 (23× 18) and
306 (17×18) false trials were performed for male and female
speakers, respectively.

3.1. Experimental setup
In the evaluation of all systems, the training speech sentences
were used to estimate the UBM produced by the combination
of two gender-dependent UBMs with half number of com-
ponents. The training samples were then used to produce the
total variability matrix in the i-vectors extraction phase. From
the extracted 100-dimensional i-vectors a two-class PLDA
model was estimated for each speaker by labelling all the im-
postors’ training i-vectors to the same class. In our experi-
ments, the number of components of the UBM were varied in
powers of 2 from 8 to 1024 for all the systems and the best
results were considered for comparison. All the systems were
tested in both cases where the decorrelation was performed by
DCT (as in conventional extraction of cepstral coefficients)
and by a H(z) = 1 − z−1 high-pass filter. When the DCT
was used, the filter banks were composed by 29 filters2 and
the feature vectors comprised the cepstral coefficients and the
additional first- and second-order delta coefficients. When
high-pass filtering was used to produce sub-band decorrelated
amplitudes, banks with 21 filters were used and only the first-
order delta components were considered. This configuration
is the same used in [18]. In both cases sequence-level mean
removal was performed to the vectors. The proposed opti-
mization method was executed for each enrolled speaker us-
ing UBMs with 32 components. In the fitness function eval-
uation a gender-independent trial scheme with a total of 100
data divisions was used. The ABC algorithm was executed
using a population with 50 food sources and the limit param-
eter was set to 20. The searches were set to terminate when 20
consecutive iterations without gain of fitness were reached.

2Following the commonly used expression n = b3 × logFsc, where
n and Fs refers to the number of filters and the sampling frequency, respec-
tively.
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Table 1. Equal Error Rates (EERs) and minimum Decision Cost Functions (minDCFs) achieved by the systems. They are
defined by the frequency scale used in the filter banks: Mel, linear (Lin), and the proposed optimized (ABC) scales; and by
decorrelation post-processing: DCT (MFCC and LFCC) and high-pass filtering (HPF). The best results are presented in bold.
The performance gains were computed by comparing the proposed method to the systems with best performance on the male
(Mel/HPF) and female (Lin/HPF) conditions, presented in italics.

EER (in %) | minDCF ×104

Male FemaleSystem
Office Lobby Intersection Avg. Office Lobby Intersection Avg.

MFCC 4.30 107.84 7.91 205.89 11.54 215.63 7.92 176.45 5.05 168.08 7.63 205.54 14.39 264.71 9.02 212.77
LFCC 4.27 126.83 7.46 200.97 9.40 211.92 7.04 179.91 5.81 159.45 8.59 227.47 10.86 229.77 8.42 205.56
Mel/HPF 4.06 101.46 7.71 207.73 7.69 206.19 6.49 171.79 4.80 171.18 9.60 199.24 16.16 313.49 10.19 227.97
Lin/HPF 5.56 145.17 8.12 221.44 8.11 188.44 7.26 185.02 5.30 123.29 6.82 183.45 12.12 244.03 8.08 183.59
ABC/HPF 2.78 95.67 6.62 161.34 9.16 227.53 6.19 161.51 3.54 93.18 4.04 138.61 10.35 206.40 5.98 146.06
Gain (%) 31.5 5.7 14.1 22.3 -16.1 -9.4 4.6 6.0 33.2 24.4 40.8 24.4 14.6 15.4 26.0 20.4

3.2. Results
For the comparison of the systems, we computed the Equal
Error Rates (EERs) and the minimum Decision Cost Func-
tion (minDCF) with cost of miss, cost of false alarm, and prior
probability of a target trial set to 10, 1 and 0.01, respectively,
as defined in [21]. Table 1 shows the performances achieved
by the systems. We found that all the systems achieved the
best performance at the case where UBMs with 256 compo-
nents were used, except for the one using Mel-scaled features
with decorrelation via DCT, which achieved the best results
using 128 components. Independently on the decorrelation
post-processing performed by the systems, better results were
achieved by the use of the linear scale for the female speakers
in comparison to the use of the Mel scale. This result was
expected since the linear scale has a better resolution in the
high-frequency region of spectrum. By comparing the base-
line systems, one can see that the best average performances
comes from the use of decorrelated filter-bank amplitudes for
both male and female speakers. This is due to the gain of
performance on the Intersection (males) and Lobby (females)
testing conditions.

The proposed method mostly outperformed all the sys-
tems for both male and female speakers. In terms of EER, the
average gain in performance compared to the best baseline
system for males (Mel/HPF) was 4.6%. On the other hand
a 26.0% of average performance gain was achieved when
compared to the best female system (Lin/HPF). In terms of
minDCF, the average gain was 6.0% for males and 20.4% for
females. Since the proposed optimization has the capability
of finding filter-bank configurations with better resolution for
higher frequencies, greater gains are also expected for fe-
males. Since only the speech samples recorded in office were
used in the training phase, the proposed optimization method
searched for the filter-bank configuration that achieves the
best verification rates using clean data. For this reason better
results were achieved in the Office and Lobby testing environ-
ments and the system performed worse with the increasing of
background noise. Indeed, the proposed method did not out-

perform the baseline systems in the Intersection testing set for
male speakers. However, artificial noise can be incorporated
to the samples used in the trials during the fitness computa-
tion of the solutions. This multi-conditional training approach
were successfully used in the past in order to increase the ro-
bustness of speaker verification systems [22, 18] and can be
easily incorporated in the proposed method. Furthermore,
gender-dependent trials can also be used in order to increase
the discriminant power of the filter-bank configurations.

4. CONCLUSIONS

In this work, we investigated the optimization of speaker-
specific filter banks for text-independent speaker verification.
The proposed method performs a heuristic search for the best
filter-bank configuration defined by the centers of the trian-
gular filters present on the bank. The proposed optimization
relies on the use of the Artificial Bee Colony algorithm and
a proper fitness function that estimates the accuracy of the
standard i-vectors/PLDA-based speaker verification system.
Furthermore, filter-bank decorrelated amplitudes are used as
features instead of the conventional cepstral coefficients pro-
duced by DCT. The amplitudes resulted from the filters are
decorrelated through a high-pass filter.

The proposed method was compared to the use of the
standard Mel and linear scales in both cases where the
decorrelation is performed using DCT and high-pass fil-
tering. The comparison was performed on the MIT Mobile
Device Speaker Verification Corpus in a gender-dependent
trial scheme. The proposed method outperformed the base-
line systems in almost all the test sets for both male and
female speakers. In terms of EER, the average gain of per-
formance compared to the best baseline system for males
was 4.62%, while a 25.99% of average performance gain was
achieved when compared to the best female baseline system.
In terms of minDCF, the average gain was 5.98% for males
and 20.44% for females. Further noise-robustness improve-
ments may be achieved by following a multi-conditional
approach in the proposed optimization procedure.
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