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ABSTRACT

Deep neural network has obtained significant accuracy improvement
in many large vocabulary continuous speech recognition (LVCSR)
tasks. Recently, it was shown that even better performance can
be obtained by modeling a larger number of more discriminative
senones. However, as the neural network becomes larger, the num-
ber of parameters increases greatly, resulting in greater computation
cost and slower decoding process. Since in LVCSR systems, most
DNN computations are done in the output softmax layer, we propose
a senone weight vector selection method in this paper to speed up the
DNN softmax computation while keeping the system accuracy more
or less the same. We apply clustering on the weight vectors of the
softmax layer and group all the senone weight vectors into several
clusters. During decoding, we only compute the exact posteriors for
senones in the selected clusters. For the senones in the unselected
clusters, their posteriors are approximated using their cluster cen-
ters. Experimental results show that our speed-up method can reduce
DNN computation time by more than 35% with negligible accuracy
loss in a DNN model with 60,000 senones on Switchboard.

Index Terms— decoding speedup, large vocabulary speech
recognition, deep neural networks, weight vector selection

1. INTRODUCTION

In the last decade, deep learning has been proved very successful
in many areas including the field of automatic speech recognition
(ASR). As of today, the acoustic models of most state-of-the-art ASR
systems are hidden Markov models (HMMs) in which state posteri-
ors are modeled by some form of deep neural network (DNN) [1, 2].
However, DNN-HMMs usually have more parameters than tradi-
tional Gaussian-mixture model-HMMs (GMM-HMMs) due to the
large number of hidden units in many hidden layers in the DNN,
and the direct modeling of senones in the output softmax layer. Re-
cently, it was also found that better recognition performance can be
obtained by modeling finer acoustic details with more senones. For
example, [3] and [4] used 32K and 60K senones in their Switch-
board (SWB) ASR systems respectively; [5] used 44K senones in
the YouTube video transcription task. The better performance of
these systems with large number of senones comes at a price: a sig-
nificant increase in their decoding time. In these systems, most —
about 80% — DNN computations are done in the output softmax
layer1. Therefore, it will be beneficial to fast decoding if we can re-
duce the computation cost in the output layer without affecting the
recognition performance significantly.

1In contrast, the amount of DNN computation in the output layer is about
50% in a typical Switchboard DNN model having about 9K senones.

There are already many decoding speedup methods that make
use of model quantization [6], model compression [7] and special
integer and floating-point instruction sets [8]. In the filed of language
modeling, there are also works aiming to reduce the computational
complexity of large neural networks [9, 10, 11]. In this paper, we
investigate a speedup method on the senone posterior computations
that is inspired by the following two observations.

Firstly, it is well-known that although the total number of
senones in a LVCSR system can be quite large, they are not all
needed during decoding at each frame. In fact, the number of active
states (senones) can be much smaller than the entire set of senones.
For example, from our analysis, the average number of active states
during Viterbi decoding in the Switchboard task is only about 2K–
3K for a DNN model with 8704 senones, and for a model with 60K
distinct triphone states (DTSs), the figure is about 3K–4K. Thus,
we see that the number of active states increases only modestly
as the number of senone grows: from about 25–30% for a typical
model with 9K senones to about 5–6% in the DTS model with 60K
senones2. This opens a possibility of evaluating only a small fraction
of senone posteriors to speedup decoding.

In [6], a lazy evaluation method was proposed to take advantage
of this observation. It computes DNN activations up to the last hid-
den layer in a dedicated thread, and the output senone posteriors of
the softmax layer are computed only when needed by the decoder in
a separate thread. The lazy evaluation means that common batching
to produce all senone posteriors over several frames cannot be done
and it also cannot be done efficiently using matrix multiplications;
thus, it introduces a small fixed cost of about 22%. Moreover, lazy
evaluation can lead to a small recognition delay. One solution is to
use batched lazy evaluation. It makes use of the piece-wise station-
ary nature of speech signals. That is, if a state is active at frame t,
it is very likely that it is also active at frame t + 1. As a result, one
may assume a set of active states remain active across several con-
secutive frames, and compute their posteriors in a batch. Obviously,
the batch size will be a trade-off between computation efficiency and
recognition latency.

Secondly, we find that the distribution of senone posteriors pro-
duced by a DNN is usually very sharp, meaning that many senones
have very low posterior probabilities. Figure 1 shows the distribu-
tion of state posteriors per frame and state priors for the Switchboard
task. We can see that over 99.9% of the state posteriors have a value
below 0.01. If one only looks at the posterior distribution, it may
seem that one needs only compute a few senone posteriors. How-
ever, since the Viterbi decoder works with likelihoods, the senone

2Note that the lower hidden layers in a DNN are shared across all the
senones. Thus, they need to be computed even only a few senones/states in
the output layer are active during decoding.
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(a) State Posterior Distribution

(b) State Prior Distribution

Fig. 1. A sample distribution of state posteriors and priors in a DNN-
HMM.

posteriors need to be converted to scaled state likelihoods by divid-
ing them by the senone priors. Fig. 1(b) shows that the prior distri-
bution is far from uniform, and around 80% of the state priors are
also very small with a value less than 10−4. It turns out that after
considering the state priors, the distribution of state likelihoods will
not be as sharp as the posteriors’. This also explains the large dis-
crepancy between the number of active states and the number of very
few states with ’large’ posteriors.

In this paper, based on the above two observations, we propose a
new method to speed up the senone posterior computation. Inspired
by Gaussian selection method [12, 13] in the speedup of GMM-
HMMs, we propose a softmax weight vector selection method that
computes the exact posteriors only for senones in a subset of clusters
selected by the inputs to the softmax units; for senones that are not
selected, their posteriors are approximated.

The rest of the paper is organized as follows. Section 2 gives a
brief review of DNN-HMMs as they are used in speech recognition.
Section 3 describes in detail our proposed method in speeding up the
senone posterior computations. Experimental results are presented
in Section 4, and we conclude our work in Section 5.

2. DNN-HMM IN SPEECH RECOGNITION

The hybrid DNN-HMM combines the discriminative modeling
power of DNN with the sequential modeling power of HMM. Com-
pared with the former GMM-HMM model for ASR, the DNN in a

DNN-HMM replaces the role of GMM in GMM-HMM to compute
the HMM state likelihoods for decoding as follows.

The DNN in the hybrid model takes an observation x, which
usually consists of several contextual frames of acoustic features as
input, and performs a series of nonlinear transformations when it
is propagated forward through L layers of perceptrons. At the lth
hidden layer, where 1 ≤ l ≤ L− 1, we have

hl
i = σ(zli) = σ

(
(wl

i)
′ · vl + bli

)
, (1)

where bli, z
l
i, and hl

i are the bias, excitation and output of its ith neu-
ron; vl = hl−1 is the input vector to the lth hidden layer; wl

i is the
weight vector associated with the ith neuron; σ(x) = 1/

(
1 + e−x

)
is the sigmoid function. A softmax layer, the Lth layer, is then
stacked onto theL−1 hidden layers. The softmax layer consists of J
units, representing the set of HMM senones sj ∈ {s1, s2, . . . , sJ}.
The softmax layer outputs are computed as estimates of the posterior
probabilities of the HMM senones:

p(sj |x) = p(sj |vL) =
exp(w′jv

L)∑J
i=1 exp(w′iv

L)
, (2)

where wj and wi are the weight vector associated with senone sj
and si respectively.

DNN training is typically done by minimizing the cross entropy
between the state distributions given by the state alignments of the
training data and the DNN outputs using the backpropagation algo-
rithm. Using the Bayes’ rule, the senone posterior probabilities are
then converted to senone likelihoods as follows:

p(x|sj) =
p(sj |x)

p(sj)
· p(x) . (3)

Since p(x) is the same for all senones, only the scaled senone likeli-
hoods p(sj |x)

p(sj)
are actually computed and used in Viterbi decoding.

3. SENONE WEIGHT VECTOR SELECTION

The big difference between the number of senones and the num-
ber of active states opens the possibility to speed up state likelihood
computations. The basic idea is that if the active states in the next
frame are known, one may save a lot of computations by comput-
ing the exact likelihoods only for those active states and ignore the
remaining states. However, since the following active states are not
known in advance, one needs an evaluation function for their predic-
tion. In the past, when GMM-HMMs were used in ASR, Gaussian
selection is a common technique for fast likelihood computations. In
Gaussian selection, all Gaussians in a GMM-HMM system are clus-
tered into a number of Gaussian clusters represented by their cluster
means. During recognition, an input acoustic vector is compared
with the cluster means to find the one that is closest to it. Only the
likelihoods of those Gaussians inside or in some neighborhood of
the closest cluster are computed. By carefully tuning the number of
Gaussian clusters and the size of their neighborhoods, the number of
Gaussians that are actually evaluated can be much smaller than the
entire set of Gaussians in the HMMs, and the method leads to a great
speedup in likelihood computation.

In DNN-HMMs, the likelihood of state/senone sj is computed
from the posterior probability of the corresponding DNN softmax
output unit, which is proportional to the exponential value of the dot
product zj = w′jh

L−1 or w′jv
L, where wj is the weight vector of

senone sj and hL−1
t ≡ vL is the output vector of the last hidden
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layer. If we ignore the state priors, senones with similar weight vec-
tors wj will produce similar posterior probabilities. Therefore, we
propose to use k-means clustering to cluster all the senone weight
vectors into a set of k weight vector clusters {Ω1,Ω2, . . . ,Ωk},
which are represented by their centroid vectors {c1, c2, . . . , ck}.
During decoding, dot products between the last hidden layer output
vL and the cluster centroids {cj} are computed to rank the clusters
in descending order. For senones in the top N nearest clusters, their
exact posterior probabilities are computed using Eqn. (2). On the
other hand, for the senones in an unselected cluster Ωi, their poste-
rior probabilities are approximated using the dot product c′iv

L.
From a predictive perspective, we are predicting the active

states in the current frame by the dot products zj = w′jv
L for

j = 1, . . . , J , and only compute their exact values for senones that
are likely to be active.

3.1. Remarks

In the actual implementation, the column vectors in the weight ma-
trix of the softmax layer are re-arranged so that the k weight vector
clusters are represented as k sub-matrices as shown in Fig. 2, to make
use of better computational efficiency in matrix multiplication. Af-
ter the re-arrangement, each sub-matrix is a weight vector cluster Ωi,
containing ni members {w1

i , · · · ,wni
i }.

(a) Original softmax
layer weight matrix

(b) Re-arranged softmax
layer weight matrix

Fig. 2. Structure of the softmax layer weight matrix.

Also note that although Fig. 1 shows that the distribution of
senone posteriors are very sharp, one should not simply set the pos-
terior probability of senones from the unselected senone weight clus-
ters to zero or a very small constant. The reason is that Viterbi decod-
ing depends on the state likelihoods not state posterior probabilities.
Since many state priors are also small, after the application of the
Bayes’ rule, small senone posteriors may produce state likelihoods
that are ‘not so small’. In this paper, we choose to approximate these
small posteriors using the approximate dot products c′iv

L where Ωi

are the unselected weight clusters the senones belong to. The ap-
proximation does not introduce extra computation as it is already
performed during the weight vector cluster selection process.

Table 1. Recognition performance of the baseline systems. The run-
times of the systems are marked 100 units for ensuing comparisons.

System Run-time (%) WER (%)
with 8,704 senones 100 14.6

with 60,000 senones 100 14.0

4. EXPERIMENTS

Evaluation was performed using two different LVCSR models built
on 310-hours Switchboard dataset. We first used a smaller but con-
ventional DNN-HMM model consisting of 8,704 senones to investi-
gate various configurations of our new speed-up method. The DTS
system with 60,000 senones was then used to evaluate the final per-
formance. Recognition results are reported on the NIST 2000 Hub5e
test set.

13-dimensional MFCC features with conversation side-based
cepstral mean and variance normalization were extracted. Seven
consecutive feature vectors were concatenated and were then re-
duced to 40-dimensional feature vectors using linear discriminative
analysis (LDA) [14], followed by maximum likelihood linear trans-
form (MLLR) [15]. Finally, speaker adaptive training (SAT) [16]
were applied. Both DNN systems had 7-hidden layers with 2,048
nodes per layer.

Training and decoding were performed with a dictionary with
30,000 pronunciation entries. A trigram language model was trained
on all transcription texts of the training set using the SRILM toolkit
[17]. Recognition performances were reported in word error rate
(WER) that was computed using the NIST Scoring Toolkit. To re-
port the recognition running times, all recognitions were performed
on an Intel Xeon E5-2620 single-CPU machine running the CentOS
operating system. Each experiment were repeated 5 times, and their
average running time is reported. The recognition performances of
the two baseline systems are shown in Table 1.

Table 2. Recognition WER (%) of the DNN system with 8,704
senones using different number of weight vector clusters k and dif-
ferent number of top nearest clusters N .

#Clusters k #Nearest Clusters N
1 2 3 4 5

2 20.1 14.6 - - -
4 25.6 18.0 15.3 14.6 -
8 27.6 20.4 17.8 16.1 15.5

16 26.0 20.4 18.2 16.9 16
32 29.5 23.1 20.2 18.7 17.7
64 28.6 23.3 21.2 19.8 18.6
128 27.2 23.0 21.1 19.9 19.2
256 26.3 23.0 21.3 20.3 19.4
512 25.0 22.6 21.3 20.3 19.5

1024 22.6 20.7 19.7 19.0 18.5
2048 20.2 19.3 18.6 18.0 17.8
4096 17.1 16.8 16.6 16.5 16.4

4.1. Results on a system with 8,704 senones

We first investigated different configurations and their effect on the
DNN system with 8,704 senones. Since we used the k-means clus-
tering method to derive the senone weight vector clusters, there are
two variables in each configuration: the total number of clusters k
and the choice of the top N nearest clusters.

Table 2 shows the recognition performance of the DNN system
with 8,704 senones for different choices of k and N .

Figure 3 plots the system WERs for different choices of N . The
dotted line represents the baseline performance. For any given num-
ber of clusters k, the WER drops sharply in the beginning and then
gradually drops asN increases. This suggests that the first few near-
est clusters probably cover more active states than the later ones.
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Fig. 3. Recognition WER(%) with different choices of N .

If we look at a column of Table 2, we may find that for any
choice of N , WER first increases and then decreases. This reveals
two factors that jointly influence the system accuracy:

• amount of exactly computed senone posteriors

• accuracy of the approximated senone posteriors

In our speed-up method, posteriors of senones in the selected clus-
ters are exactly computed while the others are approximated. When
the number of cluster k increases, the average size of each cluster
decreases, so fewer senone posteriors are exactly computed. On the
other hand, the approximation for senones in the unselected clusters
becomes more accurate as the clusters become smaller.

Table 3 concludes the speed performance of difference k when
choosing one or five nearest clusters. Computing partial senone pos-
teriors saves much computation time, while the proposed speed-up
method also introduces inefficiency in the following aspect:

• Since each frame has different active states, we cannot apply
batching and the posterior vectors have to be computed frame
by frame.

• The speed-up method has an additional cluster selection cost.

Considering both system accuracy and speed, we further conducted
experiments with different choices of N when k was 128, 256 and
512. The best result is achieved when k = 512 and N = 80, and
the speed improves by 10.1% while the WER is 14.8%.

4.2. Results on a system with 60,000 senones

According to the performance obtained from the system with 8,704
senones, we find that when the cluster number k is 512 with an av-
erage cluster size of 17, the computation speed improves while the
system performance is just slightly worse than the baseline. So we
repeated the speedup investigation on a system with 60,000 senones
using a similar cluster size. We evaluated the performance when
k = 4, 096, which gives an average cluster size of about 15. Results
are reported in Table 4.

We can see that the accuracy improves as we select more clus-
ters. When N = 140, on average, about 2,100 senone posteriors are
exactly computed and the remaining posteriors are approximated,
and the proposed method can achieve over 35% speed up with less
than 1% relative accuracy loss.

It is also observed that when more clusters are selected, the
recognition accuracy will converge but still with a small loss. There

Table 3. Relative Run-time (%) of the DNN system with 8,704-
senone under different configurations.

#Clusters k Run-time with N Nearest Clusters (%)
N = 1 N = 5

32 71.5 115.4
64 66.9 89.8

128 65.7 75.7
256 66.0 72.6
512 71.1 71.2
1024 75.1 78.6
2048 89.8 93.8

Table 4. Performance with 60,000 senones when k = 4, 096.

#Nearest Clusters N Performance Metric
WER(%) Run-time(%)

20 16.6 53.5
40 15.5 55.6
60 15.0 58.1
80 14.7 59.6
100 14.5 60.8
120 14.3 62.7
140 14.1 64.9
160 14.1 66.2

are several possible reasons for this problem. First, the approxima-
tion used for the posteriors of senones in the unselected clusters may
not be good enough. Second, as N = 160 gives the same accuracy
as N = 140, it may mean that the current N nearest clusters may
not be the optimal choice. There may be better ways to select the
best subsets of senones.

5. CONCLUSION

We report our work on speeding up softmax computation in DNN-
based LVCSR systems. We show that the posteriors produced by
DNNs can be used to predict the active states during Viterbi de-
coding. We propose a senone weight vector selection method that
divides the weight matrix of the softmax layer into several clusters
based on k-means clustering, and only computes the exact posteri-
ors from selected clusters. On a system with 8,704 senones, we can
improve the softmax computation speed by 10% with 2% relative ac-
curacy loss. On a system with 60,000 senones, the proposed method
can speed up the softmax computation by 35.1% with less than 1%
relative accuracy loss. In general, the proposed method provides
greater speedup for systems with more softmax outputs.
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