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ABSTRACT

In this paper we investigate methods to predict word error
rates in automatic speech recognition in the presence of un-
known noise types, which have not been seen during train-
ing. The performance measures operate on phoneme posteri-
orgrams that are obtained from neural nets. We compare av-
erage frame-wise entropy as a baseline measure to the mean
temporal distance (M-Measure) and to the number of phonetic
events. The latter is obtained by learning typical phoneme
activations from clean training data, which are later applied
as phoneme-specific matched filters to posteriorgrams (MaP).
When exceeding a threshold after filtering, we register this
as phonetic event. For test sets using 10 unknown noise types
and a wide range of signal-to-noise ratios, we find M-Measure
and MaP to produce predictions twice as accurate as the base-
line measure. When excluding noise types that contain speech
segments, a prediction error of 3.1% is achieved, compared to
15.0% for the baseline measure.

Index Terms— performance measure, error prediction,
automatic speech recognition

1. INTRODUCTION

Error rates produced by automatic speech recognition (ASR)
systems depend on many factors such as noise type and level,
task complexity and speaker-specific characteristics. Meth-
ods that are able to estimate or predict the word error rate
(WER) are often referred to as performance measures [8].
A typical application for such measures is the selection or
weighting of streams in a multi-stream ASR system [1, 15],
which should be especially useful in unknown conditions [5].
This paper explores three performance measures and their ap-
plication to predict the WER in unseen scenarios, i.e., in noise
types that have not been used during multi-condition training.
All measures are calculated from phoneme posteriorgrams,
which are obtained from softmax activations of a deep neural
network (DNN). The baseline measure is frame-wise entropy,
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which has been motivated by the fact that noisy frames of
the posteriorgrams often exhibit many class activations (and
hence high entropy), while clean conditions often result in
single class activations and low entropy [10, 12]. Second, the
mean temporal distance (or M-Measure) has been proposed
for performance monitoring for a phoneme recognition task
and was successfully applied later in a multistream ASR setup
in our earlier work [4, 8]. Third, we propose a matched filter
approach using average phoneme activation patterns (MaP)
learned from clean training data that - in contrast to the other
two measures - takes into account the average duration of
phonemes. We test the relation of the number of phonetic
events that exceed a certain threshold with WER. Similar pro-
cessing was suggested in [7], but in the context of keyword
spotting rather than ASR. In [9], we suggested a related mea-
sure for WER prediction that also made use of matched filter-
ing. However, that study has a different scope since it aims on
signals obtained from behind-the-ear hearing aids. This study
for the first time explores the predictive power of M-Measure
and MaP while explicitly targeting unknown noise types.
In the following, the performance measures are introduced
and the ASR experiments are outlined. In the results section,
we investigate the effect of thresholding for matched filtering,
before we compare the predictive power of each measure for
a wide range of SNRs and unknown noise types with very dif-
ferent characteristics. Finally, we analyze the absolute WER
prediction error and also report how prediction error relates to
the observation time window or the number of utterances.

2. PERFORMANCE MEASURES

In this section, the performance measures used to predict
word error rates are introduced. They are calculated from
phoneme posteriorgrams obtained from deep neural nets, and
later compared to average frame-wise entropy, which is used
as a baseline measure.

2.1. Mean temporal distance: M-Measure

The mean temporal distance or M-Measure was proposed in
[4] for performance monitoring in ASR and was shown to
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be a good predictor of error rates in a phoneme classification
task for two different noise types. It was also shown to out-
perform entropy in multistream ASR [8]. The measure takes
into account the average difference of two vectors of phoneme
posteriors pt−∆t and pt with a temporal distance ∆t, and is
given by

M(∆t) =
1

T −∆t

T∑
t=∆t

D(pt−∆t,pt), (1)

where T is the duration of the analyzed posteriorgram. The
Kullback-Leibler divergence is chosen as distance measureD
between phoneme posterior vectors pt−∆t and pt. The M-
Measure is motivated by the fact that distant clean posterior
frames will often be different since they are likely to repre-
sent different phonetic classes. On the other hand, uniform
posteriorgrams with similar class activations over time often
emerge from high noise levels. This results in lower differ-
ences between distant phoneme vectors. We consider a range
of ∆t from 50 ms to 800 ms (in steps of 50 ms), which results
in 16 data points for each utterance [8]. These are averaged
to obtain one scalar value per utterance.

2.2. Matched filtering and phonetic events

To distinguish between good and bad posteriorgrams (that
should result in low or high WER), we explore matched fil-
tering of phoneme trajectories followed by thresholding. We
refer to supra-threshold activations as phonetic events. Our
intuition is that the number of phonetic events per second
should be informative for the quality of posteriorgrams. In
the following, the two steps for calculating this measure are
described:
1. Matched filters: Phoneme-specific filters are obtained from
clean training data as suggested in [3]: A random subset of
utterances was pushed through a DNN trained on Aurora 4
multi-condition data; 330 utterances were selected for this,
which is the same number as for a standard testing set. Pos-
teriors are calculated from softmax activations obtained from
the final layer. They are converted to monophone activations
by grouping the corresponding context-dependent triphone
activations. A low threshold of 0.1 is applied which effec-
tively separates phonetic islands of activation. The islands
are centered in a 41-frame segment, averaged and normalized,
which results in the filters shown in Figure 1 with phonetic
classes denoted in ARPABET. Note how these filters cap-
ture average phoneme duration, with most vowels exhibiting
relatively wide activations, while /P, T, K/ are comparatively
short. This approach also has the potential to model asym-
metric activations, which were however not observed on our
data.
The maximum numerical value of the filter output depends

on width and shape of the filter. Since we want to use a single
threshold in the next step (in contrast to filter-specific thresh-
olds), the filters are re-normalized using the normalization
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Fig. 1. Phoneme-specific filter activations derived from clean
training data.

constant cp for phoneme p. It is obtained by collecting the
maximum values of filtered, clean posteriorgrams from train-
ing data. The 95% quantile of the maximum values is then
chosen as cp, which ranges from a value of 2.1 (for phoneme
UH) to 8.4 (phoneme S). This procedure ensures the majority
of post-filter values to be in the range from 0 to 1, and avoids
that outliers dominate the rescaling.
2. Thresholding: A low threshold should result in low se-
lectivity by producing a large number of phonetic events and
false alarms. Vice versa, a very high threshold results in
rare events that might be too sparsely distributed to cover the
whole range from low to high-noise conditions. We therefore
perform experiments to determine reasonable values for this
threshold. An example of pre- and post-filter activations is
shown in Fig. 2 for a noisy and clean activation of the same
speech segment. Note how the dynamic range between noisy
and clean signals is increased in the lower panel, which makes
them easier to separate by simple thresholding.
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Fig. 2. Example of activations for phoneme K obtained from
high- and low-noise speech before and after filtering (top and
bottom panel)
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3. ASR SYSTEM AND TEST DATA

3.1. Training data and system architecture

The ASR system was trained using the standard kaldi DNN
recipe for Aurora 4 multi-condition data[14]. The DNN used
six hidden layers, 2048 units per layer, and an additional soft-
max output layer. It was pre-trained as an RBM using con-
trastive divergence (CD-1) and supervised fine-tuning with
the triphone targets via cross entropy. Every phone was mod-
eled with three Hidden-Markov-Model (HMM) states except
for the silence phone which was modeled with five states. 40-
dimensional Mel-filterbank (FBANK) features were extracted
from the 16 kHz audio data and fed to the DNN using an
additional temporal context of 5+5 frames, resulting in 440-
dimensional input to the neural net. Phoneme posteriorgrams
were derived from the activations of the softmax output layer.
Monophone posteriorgrams were obtained by grouping all tri-
phones belonging to the same phone and subsequent summa-
tion of the corresponding activations. This was done since we
found monophone processing to give similar results than its
triphone equivalent at a lower computational cost. In the stan-
dard Aurora 4 task employed here, the following noise types
are contained in the multi-condition training set: airport, bab-
ble, car, street, and restaurant. In total, 3569 utterances are
used from training, all derived from the WSJ0 corpus using a
vocabulary size of 5,000 words.

3.2. Unknown noise types in testing data

To explore the effect of unknown noises, ten maskers were
selected that cover different types of long-term spectra and
temporal modulations (Table 1). The standard clean Aurora 4
test set (eval92) was used as a basis to create noisy test sets
with SNRs ranging from -5 to 25 in 5 dB steps. This results in
10 (noise types)× 7 (SNRs)× 330 (clean test files) utterances
(23,100 in total), which are grouped in 70 test sets.

Index Name Source Symbol
1 Vacuum Cleaner BBC o
2 Factory 1 Noisex x
3 Factory 2 Noisex +
4 Propeller Plane BBC *
5 Gym BBC ⚀
6 ICRA1 DRE01 �

7 Mall BBC v
8 Playground BBC ^
9 Rain BBC <
10 Shower BBC >

Table 1. Overview of unseen noise types and the correspond-
ing origin (DRE01 [2], the BBC Sound Effects Library, or the
Noisex database [11]).

4. RESULTS

4.1. Threshold selection for matched filtering

To determine a reasonable threshold for MaP, the relation be-
tween WER and the number of phonetic events per second
was analyzed for thresholds from 0.15 to 0.95. For a reliable
estimation of WER without prior knowledge, the relation of
WER and performance measure should be monotonic and ex-
hibit a small variance across noise types. Examples for differ-
ent thresholds are shown in Fig. 3. Each data point represents
one noise type and SNR as denoted in Table 1.
For T = 0.2, the MaP value is not very informative for deter-
mining the WER: For instance, 15 events per second are ob-
served for test conditions with more than 90% WER (shower)
or less than 10% (rain). Similar variance was found for T =
0.95 (not shown for space restrictions). For thresholds around
0.5, the WER-MaP curve approaches a sigmoid function and
exhibits less variance. To quantify this relation, a sigmoid
function was fitted to the data and used to linearize the WER-
MaP relation, from which the linear correlation is calculated.
We found T not to be a very sensitive parameter: For val-
ues from 0.45 to 0.65, correlation values above 0.95 were ob-
tained. The highest value (r = 0.98, p < 0.0001) was found
for T = 0.55, which is therefore used in the following exper-
iments.
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Fig. 3. Relation of WER and phonetic events per second for
different thresholds.

4.2. Comparison of performance measures

The relation of word error rates obtained with the test sets de-
scribed in the previous section to the performance measures
under consideration are shown in Fig. 4. As described in Sub-
section 4.1, each color/symbol denotes a different noise type
(cf. Table 1) that was not seen during training. A sigmoid fit is
used to linearize each data set. From this, we obtain correla-
tion values that indicate how well each performance measure
is suited for WER prediction. The lowest value is obtained
for entropy (r = 0.89), while higher coefficients are obtained
with M-Measure (r = 0.97) and MaP (r = 0.98). In each
case, p is below 0.0001.
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Fig. 4. Relation of WER and performance measure. Each data point represents one noise type (denoted by the marker, cf.
Table 1), and one SNR. A sigmoid function is fitted to each performance measure (thick solid line).

4.3. Prediction error of performance measures

To evaluate how well the WER can be predicted, we analyze
the absolute prediction error (PE), which is obtained by aver-
aging the differences between WER data points and the cor-
responding fit. To ensure that unseen noise types are truly
unseen, the fit is estimated for nine noise types, to which the
WER for the remaining noise type is compared. This proce-
dure is repeated for all ten noises. By taking into account the
absolute WER difference, under- and overestimates of WER
are treated equally. The trend observed for correlation is also
reflected in the PE shown in Table 2 (all noises): MaP pro-
duces a slightly lower PE than M-Measure. Both measures
outperform entropy, for which the relative PE is at least higher
by a factor of 2.1. Since the number of phonetic events by
matched filtering is tailored to speech, it should be less af-
fected when the masking noise also contains speech elements,
as masking speech will also produce supra-threshold phonetic
events, which gradually replace the events from the target
speech as the noise level increases. We therefore performed
a separate analysis for non-speech noise types, omitting mall,
gym, and playground. MaP was found to benefit from ex-
cluding maskers with speech elements (Table 2, columns non-
speech), but an even stronger effect was observed for the M-
Measure, with an average prediction error of only 3.1%. On
the other hand, PE with entropy is further increased.
Finally, it was investigated how PE depends on the size of the
observation window, i.e., the number of utterances used for
obtaining WER and PE for each measure. Fig. 5 shows the
PE for all three measures for reduced test sets, ranging from

PE Std PE Std
Entropy 11.3 12.1 15.0 15.5
M-Measure 6.0 6.5 3.1 3.6
MaP 5.9 5.4 4.8 4.2

a) all noises b) non-speech
Noise types

Table 2. WER prediction error (PE) and its standard devia-
tion for the performance measures considering (a) all noise
types or (b) only noises that contain no speech elements .
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Fig. 5. Prediction error over the number of utterances ob-
served to estimate the WER for all conditions.

256 to just one utterance from Aurora 4. All measures are
affected by reduced sets, yet the results are relatively stable,
losing less than 1% of predictive power when using 16 instead
of 256 sentences. For noise set (B), M-Measure consistently
outperforms MaP and entropy. However, when considering
all noises (A) and long observation windows, MaP should be
preferred over M-Measure since it provides almost identical
PE, yet the computational complexity is 80 times lower than
for M-Measure. The lower computational cost is achieved
through linear filtering, in contrast to the calculation of KL-
Divergence of many vectors for the M-Measure.

5. SUMMARY

This paper investigated three measures for predicting WER
in ASR experiments. All measures were evaluated in noise
types not used during training. Two measures from our ear-
lier work (M-Measure [4, 8] and matched filtering of poste-
riorgrams (MaP) [7, 9]) were applied for the first time in this
context, and were found to outperform the baseline with a
prediction error (PE) of 6.0% and 5.9% compared to a 11.3%
baseline. When considering all noise types and long observa-
tion windows, MaP produces a slightly better prediction er-
ror (PE) than M-Measure despite its low computational cost.
The design choices of MaP motivated an analysis of results
for noise types that do not contain speech segments. In this
scenario, the PEs for M-Measure and MaP are reduced to
only 3.1% and 4.8%, while the PE for entropy is further in-
creased. Shortening the observation window to predict WER
only gradually reduces the predictive power of all measures.
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