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ABSTRACT

Active learning aims to reduce the time and cost of developing speech
recognition systems by selecting for transcription highly informa-
tive subsets from large pools of audio data. Previous evaluations at
OpenKWS and IARPA BABEL have investigated data selection for
low-resource languages in very constrained scenarios with 2-hour
data selections given a 1-hour seed set. We expand on this to inves-
tigate what happens with larger selections and fewer constraints on
language modeling data. Our results, on four languages from the final
BABEL OP3 period, show that active learning is helpful at larger
selections with consistent gains up to 14 hours. We also find that the
impact of additional language model data is orthogonal to the impact
of the active learning selection criteria.

Index Terms— Active Learning, Data Selection, Automatic
Speech Recognition, Low Resource Languages, Language Model

1. INTRODUCTION

Automatic speech recognition (ASR) requires transcribed speech for
training. High quality speech transcription is expensive and time-
consuming, especially for low resource languages where expert tran-
scription services are limited. Active learning is a general technique
for training a classifier that seeks to identify those unlabeled data
points that would have the most benefit for performance if labels
were available. For ASR, this involves identifying candidate speech
segments for transcription.

OpenKWS and IARPA BABEL are public and government spon-
sored programs, respectively, that investigate ASR and keyword
search (KWS) on low resource languages. In the 2015 evaluations,
the amount of training material was dramatically limited to 3 hours.
In addition to a fixed, sponsor-defined training set, participants were
given an opportunity to develop active learning approaches for se-
lecting a 2 hour subset of data, and adding this to a fixed, predefined
1-hour “seed” set. This evaluation and shared task showcased a num-
ber of active learning approaches [1, 2, 3] highlighting the efficacy of
submodular functions (Section 3) [4, 5, 6].

In this work, we extend the investigation of active learning
on speech recognition performance beyond the constraints of the
OpenKWS and BABEL evaluations. Specifically we investigate two
qualities. First, active learning is only useful when there is real limit
to the amount of data that can be selected for labeling. If all of the
available, unlabeled data can be labeled, then the active learning
selection criteria makes no difference. We evaluate selections of 3
hours, 5 hours, 10 hours and 15 hours to identify the point of di-
minishing returns for this task. All experiments are performed on
IARPA BABEL data; specific information about the distributions can
be found in Table 1.

Second, in the OpenKWS and BABEL evaluations, the selected,
transcribed material was used for both acoustic and language mod-
eling. However, it is much easier to collect text data to augment a
language model than it is to collect and transcribe additional speech
for acoustic modeling. One hypothesis explaining the limited perfor-
mance of ASR trained on 3 hours of data, and the success of active
learning over random selections, is that it is due to an impoverished
language model. To test this, we augment each language model
with material collected from the web and evaluate the impact on
recognition performance (Section 4.4).

Language Build Pack Pool WER (FLP)
Amharic IARPA-babel307b-v1.0b 16.72 h 56.60%
Igbo IARPA-babel306b-v2.0c 18.97 h 75.60%
Mongolian IARPA-babel401b-v2.0b 17.60 h 73.40%
Pashto IARPA-babel104b-v0.4bY 20.11 h 60.20%

Table 1. Languages, build packs, total hours of segmented audio in
selection pool, and word error rate for Full Language Pack (FLP).

2. RELATED WORK

A number of approaches have been proposed for active learning
in speech recognition. Supervised techniques involve the use of
transcripts for the process of selecting data. The typical process uses
the seed transcripts to train an ASR and decode the audio selection
pool. ASR-derived measures, often confidence scores, are used to
estimate the likelihood of an utterance’s improving the ASR model
with high resource languages (e.g. [7, 8, 9, 10]). Our experiments
focus on unsupervised techniques which forego the use of any base
transcripts and use acoustic features or side information to estimate
the likelihood an utterance’s importance in improving the ASR model.
One advantage of these techniques is faster training of a base ASR
model by avoiding the time- and labor-intensive steps of base-level
transcription or ASR training and decoding for selection purposes.

There has been growing interest in submodular optimization for
data selection and active learning in speech. The facility location func-
tion, with a Fisher Kernel for pairwise similarity, was used by [11] for
phone recognition in TIMIT, and in low resource ASR training by [5]
augmented with a diversity reward function. Feature-based functions
have been used by [12] for ASR training with Switchboard and Fisher,
while multi-layer feature-based functions were introduced by [13]
for phone recognition in TIMIT. Feature-based function have also
been applied in low resource settings to select acoustically diverse
subsets [6], minimize divergence to a target set [14], and augmented
with length-normalization to remove bias for long utterances [4]. Our
approach focuses on the application of multi-layer feature-based func-
tions to low resource speech recognition and investigates the effect of
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feature encodings on the selections and performance.

3. SUBMODULAR FUNCTIONS AND SUBSET
SELECTION

A submodular function [15] f is a real-valued function over sets
satisfying the following property for any S ⊆ S′, u /∈ S′:

f(S ∪ {u})− f(S) ≥ f(S′ ∪ {u})− f(S′). (1)

Submodularity captures the property of diminishing returns: the
marginal benefit of adding an element u to a set S′ does not exceed
the marginal benefit of adding u to any subset of S′. f is also
monotone non-decreasing if, for any S ⊆ S′, f(S) ≤ f(S′). In the
subset selection problem with a cardinality constraint, |S| < K, we
wish to maximize the value of our selected subset, f(S), subject to S
having at most K elements. Although this problem is NP-hard, if f
is non-decreasing and submodular, a greedy algorithm ensures a near-
optimal subset [16]. The greedy scheme always selects the element
with the highest marginal benefit: f(S∪{u})−f(S). Active learning
is often concerned with subset selection under a budget constraint.
Here, each element v ∈ S is associated with a cost, c(v), and the
cost of the subset may not exceed a budget B, i.e.

∑
v∈S c(v) ≤ B.

In this case, a near-optimal result is guaranteed by the cost-benefit
greedy algorithm [17], which always selects the element with the
highest marginal benefit cost ratio: f(S∪{u})−f(S)

c(u)
.

In this section, we discuss two classes of functions, previously
applied in unsupervised data selection for low-resource languages.

3.1. Facility location with diversity reward

The facility location function (2) measures the similarity of a selection
S to the remainder of the whole set U [11]:

f(S) =
∑
u∈U

max
s∈S

wu,s. (2)

Maximizing f above tends to yield elements which are highly repre-
sentative of the larger pool. One issue is that this function tends to
oversample central data points possessing the most common features.
The facility location with diversity reward [5] mitigates this by regu-
larizing the facility location objective with a reward based on cluster
membership [18]:

f(S) =
∑
u∈U

max
s∈S

wu,s + λ
∑
i

δ(S ∩ Ci 6= ∅). (3)

Ci, i = 1, . . . , k are clusters which non-disjointly partition U . The
second term in Equation 3 counts the number of unique clusters for
which the elements of S may claim membership, thus preferring
elements possessing a wider range of features. Maximizing f yields a
selection which is representative, while selecting from diverse regions
of the feature space.

3.2. Two-layered feature based functions

Although the facility location with diversity reward performs well
among a variety of unsupervised methods of selection [5], it requires
the computationally expensive task of constructing a pairwise similar-
ity graph over the entire dataset. Feature-based submodular functions
[19], in contrast, take the form:

f(S) =
∑
h∈H

whgh(mh(S)). (4)

Here, H is a set of features and mh assigns a relevance score for
feature h ∈ H to set S by summing up the relevance of feature
h for each element of S: mh(S) =

∑
s∈S mh(s). Typically, mh

measures mass or degree of feature h present in sample s. wh is
a feature-specific weight, and gh may be any non-negative, non-
decreasing concave function, such as the logarithm or square root.

Feature-based functions allow a variety of features to be con-
sidered for subset selection and tend to promote representative and
diverse selections. Although feature-based functions account for in-
teractions between elements of a set, they do not consider interactions
between features. This has the disadvantage of selecting items even if
they posses redundant information. To overcome this, [13] proposed
two-layered feature-based submodular functions of the form:

f(S) =
∑
h∈H

gH

(∑
l∈L

whl gL (ml(S))

)
. (5)

Here, L is a low-level feature space, while H is a high-level feature
space (e.g. a set of meta-features), such that dim(L) > dim(H),
where dim(·) measures the dimensionality of a feature space. Then,
whl measures the interaction between features h ∈ H and l ∈ L,
while ml measures the relevance score for a set for feature l ∈ L. gH
and gL are non-negative, non-decreasing concave functions specific
to each feature space, as above.

4. METHODS

All ASR experiments were performed using IBM Attila [20] We
train both GMM and DNN acoustic models. The GMMs are speaker-
independent with 1000 context-dependent (CD) states and 6000 mix-
ture components. The DNNs concatenate 9 input frames, contain 5
hidden layers of 1024 units, a bottleneck layer with 128 units, and
1000 outputs corresponding to the same 1000 CD states. The GMM
architecture was optimized for 3 hour selection sets, while the DNN
architecture was optimized for systems trained with 40 hours of train-
ing data. As such both of these may be sub-optimal at some selection
sizes. We chose to keep these architectures fixed to focus on the
impact of active learning.

We follow the IARPA BABEL active learning scenario: we are
given one hour of transcribed seed data, and a pool of untranscribed
audio data for selections. The selection pool was segmented using a
Voice Activity Detector (VAD) with frame energy based tresholding
from the Spear toolkit [21]. We found the automatic segmentation to
be less reliable for segments with duration under one second. Thus,
we only considered segments greater than one second in duration.

4.1. Random selection

For a baseline, we use a heuristic based on the one used by IARPA
BABEL and NIST (OpenKWS) for selecting 3-hour very limited
language packs (VLLP). For each conversation, start at the mid-
point and select the closest segment. In successive iterations, select
segments by alternately moving toward the beginning and end of the
conversation and skipping over segments shorter than one second, or
longer than twenty seconds. Selections are made round-robin over all
conversations until the required total duration has been met.

4.2. Speech Rate selection

We also performed selections based on speech rate. Selecting utter-
ances with higher speaking rates should yield higher concentration
of phones or words for acoustic model and language model training.
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Language Token Count Type Count
Amharic 10.8M 908.6K
Igbo 1.6M 48.5K
Mongolian 115.9M 1.7M
Pashto 100.5M 1.8M

Table 2. Token and type counts of web data added to LM.

We used a syllable nuclei detection algorithm [22] in AuToBI [23] to
estimate speech rate.

4.3. Submodular selection

For acoustic features, we used 62-dimensional multilingual features
extracted from a deep neural network [24] trained on 28 languages
in the BABEL corpus. For our data selection procedures, we dis-
cretized the acoustic feature space by learning a k-means codebook
C1, C2, . . . , Ck over the utterances with an encoding function q. In
any utterance u with m frames, each frame is assigned to its cen-
troid from the codebook. We encode the utterance as the vector
q(u) = [ci(u) · · · ck(u)], where ci(u) counts the occurrence of cen-
troid Ci in u. To instantiate the two-layered feature-based function,
we consider two approaches.

Feature encoding with TF-IDF normalization. For the low
level feature space L, we learn a k-means clustering with k = 1024;
for the high level feature space H , we use k = 128. The utterances
are encoded using both codebooks. To measure interactions between
H and L, whl counts co-occurrence of features h ∈ H and l ∈ L
across all utterances. The relevance of feature ml(u) is measured as
the TF-IDF normalized count of feature l in u.

Feature encoding based on word2vec skip-gram model. We
learn a clustering with k = 1024 to encode the utterances as described
above. We then employ the word2vec algorithm with a continuous
skip-gram model [25] to determine a different distributed represen-
tation for the encoding. The skip-gram model uses each frame to
predict its surrounding context frames and we expect the resulting
encoding to take frame level contexts into account. We learn two
different models H and L to produce two sets of encodings, with
d(H) = 42 and d(L) = 1024. The interactions between H and L
are measures by computing the covariance features h ∈ H and l ∈ L
across all utterances, i.e. whl = cov(h, l).

4.4. Addition of web data

Having limited amounts of transcribed training data for an ASR
limits the performance of both the acoustic and language models.
In our experiments, active learning based on acoustic features helps
acquire transcribed data with the best potential impact on the acoustic
model. However, the resulting language model is tightly coupled to
the acoustic data which limits its performance on future unseen data,
especially out of vocabulary data. There is a vast amount of textual
data on the web and although harvesting such data presents its own set
of challenges, the acquisition of additional web data has relatively low
marginal costs. We used web data, which had been collected based
on the system described in [26], to augment our language model data
during training and investigate its impact on system performance.
Table 2 shows relevant statistics concerning the web data used to
augment the language models.

Language Hrs Baseline Base+Web SM SM+Web
Amharic 2 67.2 66.5 65.3 64.6

4 64.3 63.9 62.8 62.0
9 60.8 60.3 60.1 59.7
14 59.5 59.2 58.6 58.1

Igbo 2 77.3 77.1 77.0 76.8
4 77.1 76.8 76.7 76.5
9 76.1 75.8 75.4 75.4
14 75.4 75.4 75.3 75.3

Mongolian 2 76.0 75.4 75.9 75.3
4 76.4 75.6 74.9 74.2
9 74.7 74.0 74.1 73.6
14 74.4 73.8 73.2 72.9

Pashto 2 66.1 65.9 66.0 65.7
4 64.8 64.6 64.6 64.3
9 62.6 62.2 62.0 61.7
14 61.7 61.5 61.0 60.9

Table 3. Performance with augmented language model.

4.5. Adapting to the target audio

Evaluation audio may not follow the same feature distribution as the
training audio. To measure the impact of this on our selection process,
we modified the two layered TF-IDF feature based function by learn-
ing clusterings on acoustic features derived from the evaluation audio.
These encoding functions were then used to encode the training audio
data as above. This is an unsupervised adaptation of the training data
selection method that is aware of the evaluation audio, but requires
no transcription of the evaluation speech.

5. RESULTS

To examine the difference between feature encodings for the SM
method, we conducted experiments on Mongolian language data.
The results (Fig. 3) show that selection with the two-layer function
using TF-IDF feature encodings perform best at all selection points.
Addition of web data to this method also improves the results. How-
ever, word2vec skip-gram encodings perform only slightly better than
random and about on par with the speech rate selection method.

We used the submodular two-layer function with TF-IDF encod-
ings (SM method) for subsequent investigations across all languages.
Figures 1 and 2 show the active learning rates over selection points
of 2-, 4-, 9-, and 14-hours, terminating once the whole selection pool
has been added. The SM method generally performs better than the
baseline heuristic method. The absolute gains vary across languages,
with the best gains realized in Amharic. The addition of web data
also tends to improve both the baseline and SM selections. Figure 4
provides a closer look at the gains offered by the SM method over
the baseline method. In general, we see consistent gains up to the
14-hour point, though these vary by language.

We examine the effects of adding web data in further detail in
Table 3, which show the drop in WER when web data is added to
the SM selections and to the baseline selections. Augmenting the
language model helps improve the performance of both methods
across all languages except Igbo, which may be due to the relative
scarcity of web data for Igbo (Table 2). Smaller gains are also realized
with Pashto when compared to Amharic and Mongolian.

We also investigated adapting to the evaluation audio using the
two-layer function (SM-adapt) with 2-, 4-, 9- and 14-hour selections
on Mongolian. Table 4 shows changes in WER over the SM method.
In general, we see gains at small selections with deterioration at the
14-hour point. We examined the effect of adding web data to SM-
adapt selections and see that augmenting language models improves
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Fig. 1. Active learning curves with context-dependent GMM based ASR.
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Fig. 2. Active learning curves with DNN based ASR.

2 4 9
selection

0.0

0.4

0.8

1.2

1.6

∆
 W

E
R method

SM-TF-IDF
SM-TF-IDF+Web
Speech rate
SM-W2V

Fig. 3. Mongolian: absolute improvements to WER over baseline at
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Fig. 4. Submodular (TF-IDF) performance. Absolute improvements
to WER over baseline at 2-, 4-, 9-, 14-hours and FLP.

these selections, though gains are on par with the SM+Web method
by the 14-hour point. Since SM-adapt seems most beneficial at
smaller selections, we experimented with 2-hour selections across all
languages. Table 4 shows that SM-adapt leads to small gains in WER
over the SM method, while including web data leads to larger gains
over the SM+Web method.

Language Hrs SM SM+Web Adapt Adapt+Web
Mongolian 2 75.20 74.50 74.50 73.80

4 73.55 72.95 73.35 72.75
9 72.75 72.25 72.60 72.15
14 71.80 71.45 72.00 71.50

Amharic 2 67.30 66.75 67.15 66.50
Pashto 2 66.45 66.10 66.35 66.10

Table 4. Performance with adaptation to target audio.

6. CONCLUSION

In the context of speech recognition on low-resource languages, we
explored the value of active learning with larger selection sets, and
with the introduction of more data for language modeling.

We find that, in general, the value of active learning is persistent
with larger selections. We see larger gains from active learning over
random selection at 4 hour selections than at 2 hours, with smaller
but consistent gains at 9 and 14 hours selections. We assess the
hypothesis that gains from active learning may be overwhelmed by the
introduction of additional language model data and find performance
improvements from active learning and additional language model
data to be orthogonal and complementary. The impact of additional
language data is fairly consistent within language, regardless of the
amount of training data or selection strategy.

Automatic speech recognition comprises (at least) three intercon-
nected problems: acoustic modeling, pronunciation modeling, and
language modeling. The submodular functions we investigated for
active learning address the acoustic modeling problem. They identify
acoustic diversity and representativeness of each frame and aggregate
over candidate utterances. This selection process does not explicitly
identify diverse and representative productions (pronunciations) of
given sequences, or word sequences. Any improvement to these
criteria is only as a side effect of frame-based acoustic qualities. An
optimal selection criteria for ASR would address all three problems.
This remains a question for future work.
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[24] Zoltán Tüske, Pavel Golik, David Nolden, Ralf Schlüter, and
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