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ABSTRACT

Different neural networks have exhibited excellent performance on
various speech processing tasks, and they usually have specific ad-
vantages and disadvantages. We propose to use a recently developed
deep learning model, recurrent convolutional neural network (RCN-
N), for speech processing, which inherits some merits of recurren-
t neural network (RNN) and convolutional neural network (CNN).
The core module can be viewed as a convolutional layer embedded
with an RNN, which enables the model to capture both temporaland
frequency dependance in the spectrogram of the speech in an effi-
cient way. The model is tested on speech corpus TIMIT for phoneme
recognition and IEMOCAP for emotion recognition. Experimental
results show that the model is competitive with previous methods in
terms of accuracy and efficiency.

1. INTRODUCTION

Speech processing has been studied for decades. It has long been
dominated by the Gaussian Mixture Models (GMM) - Hidden
Markov Model (HMM) [17] structure until the resurgence of deep
neural network (DNN) [20]. The first DNN successfully applied
to speech recognition refers to the multi-layer perceptron(MLP)
(when trained in an unsupervised way it is called deep beliefnetwork
[13]). MLP-HMM systems significantly improved the performance
of speech recognition on both small datasets [20] and large-scale
datasets [7]. In recent years, recurrent neural networks (RNN) such
as the long short-term memory (LSTM) and gated recurrent units
(GRU) have achieved even better results in speech recognition. How-
ever, RNNs are generally hard to train because they cannot take full
advantage of current highly optimized parallel computing facilities
such as GPU. Convolutional neural network (CNN) is another class
of popular deep learning model, but it has not exhibited significant
improvement over other models in speech processing.

Recently, Liang et al. [18, 19] proposed an integrated modelof
RNN and CNN, called Recurrent Convolutional Neural Network(R-
CNN), and successfully applied it to object recognition andscene
labeling. In view of the embedded RNN structure, it is expected to
function well in modeling speech because speech is a typicaltype of
sequential data, in which the information is temporally related. This
is the primary motivation of the present work. We want to know
whether this particular structure is suitable for speech-related appli-
cations. The experimental results on two speech processingdatasets
show that RCNN is efficient and effective, indicating that itis a good
alternative in related applications1.

1The source codes can be downloaded at: https://github.com/zhaoyue-
zephyrus/RecurrentConvNet-for-Speech.

2. RELATED WORK

CNN has been widely used in computer vision. Intuitively, itis
also applicable to speech recognition since the audio signal can
be converted via short-time fourier transform (STFT) into aspec-
trogram which can be viewed as a 2-dimensionimage indexed by
the time-axis and frequency-axis. Despite some positive result-
s, it has long been argued that CNNs overkill the variation along
time-scale by pooling within a temporal window, resulting in deep
fully-connected neural network’s dominance in modeling time vari-
ation [17]. Abdel-Hamid et al. introduced alimited-weight-sharing
convolutional scheme [1, 2] and found that using convolution along
the frequency axis or time axis increased recognition accuracy, but
the improvement was less significant along the time axis. To allevi-
ate the problem, a bottleneck network was constructed in place of
the pooling layer [29]. Furthermore, Tóth in [28] proposed treat-
ing time-domain and frequency-domain separately and achieved
the best performance on the TIMIT dataset by constructing such a
hierarchical convolutional network.

Inspired by the temporal characteristics of speech, RNN, which
tries to predict the current frame based on feature information collect-
ed from previous frames, has long been used in speech recognition
tasks [23]. Due to its capability of modeling sequential data, RNN
can be combined with HMM, or even replace HMM. In the latter
case, the model can be trained “end-to-end”, and for this purpose,
the connectionist temporal classification (CTC) [9] and RNNTrans-
ducer [8] were proposed to deal with the specific evaluation metric
for sequence labeling. Two special RNN models, Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) are now wide-
ly used [10, 6] in speech recognition. These methods have showed
good results in many tasks. One of their limitations refers to the d-
ifficulty in training, and in practice, their performance relies heavily
on pre-training.

Several recent works attempted to combine CNN and RNN for
speech recognition. Amodei et al. proposed a CNN-RNN hybrid
model for Large Vocabulary Continuous Speech Recognition (LVC-
SR) [4]. Sainath et al. proposed an architecture, which unifies CNN,
LSTM, and MLP [25]. In the two models, however, the CNN mod-
ule and RNN module are separated. A similar combination method
was proposed for text classification [16]. Recently, Liang et al. pro-
posed a deep learning model in which RNN and CNN were tightly
coupled [18, 19]. The hallmark of the model is that there exist intra-
layer recurrent connections among units in the convolutional layer
of CNN. This model was used in experimentes on static images,but
has not been tested on speech data.

3. METHODS

The core module inside RCNN is the Recurrent Convolutional Layer
(RCL), whose state evolves over discrete time steps. Recallthat a
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generic RNN usually has a feed-forward inputx(t) and a hidden
stateh(t) which depends not only on the input but also the hidden
state in the previous time step:

h(t) = F(x(t),h(t− 1), θ)

where the functionF describes the dynamic characteristics of the
RNN, with parameterθ. In conventional RNN,F is realized by a
fully connected weight matrix and a nonlinear activation function
σ(x):

h(t) = σ(Wxhx(t) +Whhh(t− 1) + bh).

In RCL, the connections are local and share the same weights
across the spectrogram, i.e., RCL is realized by convolution. Denote
the feedforward input at position(i, j) by x

(t), and the state of the
hidden layer to beh(t), then

h
(t)(i, j) = σ(
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k are thek-th feed-forward kernel and recurrent

convolutional kernel, respectively. Both kernels are shared at differ-
ent time steps.σ(x) = fn(g(x)) is a composition of two nonlinear
functions. The inner oneg(x) can be either a conventional sigmoid
functiong(x) = 1/(1 + e−x) or a rectified linear unit (ReLU) [21]
g(x) = max{x, 0}. A model with ReLU usually converges faster
and tends to achieve better performance compared to using the sig-
moid function. However, the faster convergence brings the problem
of “exploding gradient”, which calls for smaller learning rate and
necessary normalization. The outer functionfn(·) denotes an appro-
priate normalization function. The batch-normalization method [14]
is adopted here. Specifically,fn(xi; γ, β) = γx̂i + β, whereγ and
β are trainable parameters, and

x̂i =
xi−µB√

σ2

B
+ǫ

µB = 1
m

∑m

i=1 xi

σ2
B = 1

m

∑m

i=1(xi − µB)
2.

In the equations above,xi denotes the input feature to be normalized,
x̂i denotes the normalized feature,ǫ denotes a small constant (10−5

in our experiment),µB denotes the mini-batch mean andσ2
B denotes

the mini-batch variance.
In implementation, an RCL is unfolded forT time steps into a

multi-layer sub-network. See Fig. 1 for an example withT = 3.
The receptive field (RF) of each unit expands with largerT , so that
more context information is captured by the unit. The depth of the
subnetwork increases with largerT , while keeping the number of
parameters constant due to weight sharing across time steps.

It is assumed that the input to an RCLx(t) is the same across
time t, which is denoted byx0. It is equivalently the output of the
previous layer. This assumption means that the feed-forward part
contributes equally at every time step.

To understand the essence of the RCL, it is useful to clarify the
concept of time step in RCL. It is not identical to the time associated
with the sequential data, and instead it refers to aniteration during
processing the data. This is in sharp contrast with conventional RN-
N, whose time step is identical to the time present in the data. In
conventional RNN, the current state is updated according tothe pre-
vious state, while an RCL processes information from neighboring
time slots and frequency banks at each iteration. In this sense, RCNN

t=0

t=1

t=2

Fig. 1. Illustration of a single RCL (left) and its unfolded version
with T = 3 (right). The colored parallelograms in the bottom rep-
resent the input spectrograms. The upper ones stand for the hidden
states. The dotted lines denote feed-forward connections and the sol-
id lines denote recurrent connections.

shares the advantage of multi-dimensional recurrent neural network
(MDRNN) [11], that is, modeling on recurrent relationship along all
possible dimensions not merely temporal dimension.

By stacking several RCLs, and optionally interleaved with pool-
ing layers and other layers, a deep RCNN can be constructed. This
resembles how CNN is constructed based on convolutional layers
and other layers. In both computer vision applications and speech
recognition applications, it has been found that adding several ful-
ly connected layers (i.e., an MLP) on the top will boost the perfor-
mance of CNN [26, 24]. Inspired by this, we focused here on the
RCNN-MLP architecture in experiments.

4. EXPERIMENTS

Two speech processing tasks, phoneme recognition and emotion clas-
sification, were considered in our experiments. In phoneme recogni-
tion, RCNN was used to predict senones directly. In emotion clas-
sification, RCNN is used for feature extraction, while the classifica-
tion is fulfilled by a support vector machine (SVM). All experiments
were carried out on a NVIDIA GeForce GTX Titan Black GPU.

4.1. Phoneme recognition

4.1.1. Dataset

TIMIT recorded 630 speakers, each reading ten phoneticallyrich
sentences. The TIMIT corpus was manually segmented and annotat-
ed using 61 phonemes. Excluding the SA sentences that all speak-
ers read, the training and test sets consist of 3696 and 1344 utter-
ances, respectively. 192 utterances among the complete test set are
prescribed to be a core test set. We also report our result on apre-
defined development set, a subset of 400 utterances from the test set.
10% (369) utterances were randomly drawn from the training set for
automatically adjusting learning rate during training.

4.1.2. Experimental setup

The raw speech data recorded at a sample rate of 16 kHz was firstpre-
processed via a short-time Fourier Transform with 40 filter-banks
distributed on a mel-scale, into 25 ms-long frames, at a stride of 10
ms. The first and second temporal derivatives were also included,
which were concatenated to be a 120-dimension feature vector for
each frame. The coefficients were then normalized so that they had
a mean of 0 and variation of 1 over the training set.
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model layer kernel size2 stride # of channels batch norm

CL+pooling CL (15,8) (1,1) 128 -
pooling (2,2) (2,2) - -

CL+CL+pooling CL1 (15,8) (1,1) 128 no
CL2 (7,3) (1,1) 128 no
pooling (2,1) (2,1) -

RCL(1)+pooling RCL forward (12,2) (4,1) 128 yes
RCL recurrent (7,9) (1,1) 128 yes
pooling (4,1) (4,1) - -

RCL(2)+pooling RCL forward (11,2) (1,1) 128 yes
RCL recurrent (15,5) (1,1) 128 yes
pooling (15,1) (15,1) - -

RCL(3)+pooling RCL forward (11,3) (1,1) 128 yes
RCL recurrent (11,3) (1,1) 128 yes
pooling (15,1) (15,1) - -

RCL(2)+CL RCL forward (10,2) (2,1) 128 yes
RCL recurrent (9,5) (1,1) 128 yes
CL (16,2) (1,1) 256 no

Table 1. Description of the first part of the models before the 3-layer
MLP used for TIMIT phoneme recognition

For a frame at timet, a patch ranging fromt−∆ to t+∆ on the
time axis was extracted, which included all filter-bank coefficients
on the frequency axis. The spectrogram fed into a model as input
had three channels consisting of static coefficients and coefficients of
the first and second temporal derivatives, respectively. Therefore, the
input patch was of size(2×∆+1)×40×3. In all experiments,∆ =
5. The network was trained using the stochastic gradient descent
(SGD) with automatic adjusting of the learning rate. The mini-batch
size was 200. The initial learning rate was set to be0.02 per batch
and was annealed to half of its original value if the accuracyon the
validation set stopped increasing. The momentum was 0.9.

To generate the frame-level label, a conventional context-
dependent (CD) HMM of 1954 senones was used with the assistance
of the Kaldi toolkit [22]. The phoneme label outputs were mapped
to the usual set of 39 labels for evaluation. The ultimate result was
based on phoneme error rate (PER).

We tested different models on CNTK [3], all of which used the
same 3-layer MLP (each layer had 2048 units) in the end. Then the
difference between different models would mainly come fromthe
difference in other layers. Table 1 lists settings of those different lay-
ers in different models, where CL denotes convolutional layer. The
number in parentheses for each RCL denotes the number of unfold-
ing time stepsT . All CLs and RCLs used ReLU while all MLP lay-
ers used sigmoid function as activation function. Besides the models
described in Table 1, a 4-layer MLP was also tested with 2048 units
in every layer.

4.1.3. Results

The results of these models are listed in Table 2. Considering the
same 3-layer MLP among the models, the first model in the table
can be called MLP, the second and the third can be called CNN, and
the models with RCL can be called RCNN. From MLP, CNN to
RCNN, a progressive decrease in PER was observed. The compari-
son between the 1-layer and 2-layer CNNs (the second and the third
models in Table 2) confirmed the fact that for small-scale corpus, s-
tacking more convolutional layers may be harmful and convinced us
to use a single RCL layer in the RCNN models. We found that un-
folding more time steps may yield lower PER (compare the fourth
and fifth models in Table 2) but there was a limit. To achieve anap-

2The tuple (Nf , Nt) corresponds to the frequency- and time- axis, and so
is the stride size.

dev set3 core test set

4-layer MLP 19.9% 22.0%
CL+pooling+3-layer MLP 18.4% 20.0%
CL1+CL2+pooling+3-layer MLP 19.2% 20.5%
RCL(1)+pooling+3-layer MLP 18.3% 20.3%
RCL(2)+pooling+3-layer MLP 17.3% 19.2%
RCL(3)+pooling+3-layer MLP 17.5% 19.3%
RCL(2)+CL+3-layer MLP 17.0% 18.0%
DBN [20] - 20.7%
CNN (limited weight sharing) [1] - 20.5%
bottleneck CNN [27] 16.1% 18.6%
3-layer LSTM + HMM [30]4 17.7% 18.8%
3-layer LSTM + pre-trained transducers [10] - 17.7%
Attention model [6] 15.8% 17.6%
time- and frequency- domain convolution [28] 14.2% 17.6%
time- and frequency- domain convolution
(with dropout) [28] 13.9% 16.7%

Table 2. Results of different models on TIMIT phoneme recogni-
tion.

train decode

RCNN 2012 samples per second 1.721 utterances per second
LSTM 275 samples per second 0.944 utterances per second

Table 3. Comparison of speed between RCNN and LSTM

propriate size of input for posterior MLP, a pooling layer ofstride 15
was used in most models, which may render a loss of temporal infor-
mation. By replacing the pooling layer with a CL, PER decreased to
18.0%.

We compared the results with existing models in the literature
(see the lower part of Table 2). Our best model outperformed most
of the ANN-HMM hybrid models. The exception was a network-in-
network configuration [28], which was trained in two steps. Com-
pared with the recently developed RNN-based end-to-end models,
such as the RNN transducer [10] and attention model [6], our model
was also competitive. However, our model converged faster and did
not use pre-training. The best model in [10], which achieved17.7%
PER, was based on a pre-trained transducer and was trained for 144
epochs. For RCNN, however, the model was trained within 20∼ 30
epochs from scratch.

To compare the speed of RCL module with LSTM module, we
trained a 3-layer LSTM with 1024 cells per layer using CNTK on
our GPU server. The structure was borrowed from [30] (the non-
highway version). An HMM, instead of a pretrained transducer, was
used on top of the LSTM. The mini-batch size was set to 200, the
same as for RCNN. Results showed that RCNN was faster both in
training and decoding phases (Table 3). We attribute the difference
to heavily optimized convolution operation in CNTK.

3The selection for the development set may vary with different authors.
4The original paper works on another dataset. We use the structure here

only to compare the speed between RCNN and LSTM so the performance
may not be tuned perfectly. See in 4.1 for further discussion.
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4.2. Emotion recognition

4.2.1. Dataset

The IEMOCAP dataset [5], short for The Interactive Emotional
Dyadic Motion Capture, consists of approximately 12 hours of
audio-visual data and was annotated by multiple annotators. Since
different annotators may give different judgments, labelswith the
majority of annotators were used in order to avoid ambiguity. We
only considered utterances with labels from the following five e-
motions: excitement, frustration, happiness, neutral andsurprise.
Among the 5300 utterances left after the filtering process, apropor-
tion of 80% was randomly selected for training and the remaining
were used for test.

4.2.2. Experimental setup

The input to the models consisted of 25-frame segments and the cor-
responding labels. Three models were constructed. The firstmodel
was an MLP with 3 hidden layers. The second was a CNN consist-
ing of a CL with a 2-hidden-layer MLP. The third was an RCNN
consisting of an RCL with a 2-hidden-layer MLP. Each fully con-
nected hidden layer had 256 units with the ReLU activation func-
tion. For RCL, the feed-forward kernel size(Nf , Nt) was (9, 9)
and the recurrent kernel size(Nf , Nt) was (7, 5), and the number
of unfolding time steps was 2, such that the RCL unit could see
the whole input. The number of channels was 64 for both feed-
forward and recurrent part. For comparison, the CL had 128 con-
volutional kernel with(Nf , Nt) = (9, 9) along with a max pooling
layer of size(2, 2) and stride(2, 2) such that the number of learn-
able weights were comparable. Nonlinearity was realized byReLU
and local response normalization (LRN) [15] with hyper-parameters
α = 10−3, β = 0.75, k = 1, n = 9.

After segment-level optimization, the segment-level features
were extracted and merged into anutterance-level feature for
utterance-level classification according to a previous study [12].
Let f (l)s = [f

(l)
s (1), · · · , f (l)

s (D)] denote theD-dimensional feature
extracted from thel-th layer for thes-th segment. For an utterance
with segmentS = {1, · · · , S}, the utterance-level featuref (l) is
defined as

f
(l)
1 = max

s∈S
f
(l)
s f

(l)
2 = min

s∈S
f
(l)
s f

(l)
3 =

1

S

S
∑
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f
(l)
s
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1

S

[

· · · , f (l)
4 (i), · · ·

]

=

[

· · · , 1
S

S
∑

s=1

[

f (l)
s (i) ≥ θ

]

, · · ·
]

The first three vectors of feature can be viewed as a pooling inthe
manner of maximizing, minimizing, and averaging along all seg-
ments of a single utterance. The last vector is the percentage of seg-
ments whose activation on each neuron in the feature map is above
a certain threshold.

After the fixed-length utterance-level features were obtained, an
SVM classifier was trained to predict the utterance-level labels. S-
ince the utterances were not evenly distributed among emotion cat-
egories, both weighed and unweighed accuracy were calculated for
evaluation, as in [12]. The weighed accuracy is the accuracyon the
whole test set, with every utterance’s contribution being the same,
while the unweighed accuracy is the averaged accuracy over each e-
motion class, which better reflects overall accuracy in the presence
of an imbalanced class.

Weighed Accuracy=
# of correct utterances

# of utterances

Unweighed Accuracy=
1

5

5
∑

i=1

# of correct utterances for emotioni
# of utterances for emotioni

4.2.3. Results

We compared the classification accuracy using segment-level fea-
tures from different layers and found that those from the last hidden
layer performed best. All results reported in Table 4 are based on
those features. Besides weighted accuracy and unweighted accura-
cy, Table 4 also shows the frame-wise test accuracy during segment-
level training. Among the three models, RCNN performed the best
in terms of both weighed and unweighed accuracy. Compared with
models in the literature, RCNN has achieved competitive results.
Note that it is claimed in [12] that using spectral features rendered
unsatisfactory performance and, as a result, MFCC plus pitch-based
features were used in [12]. Our results indicate that using RCNN, the
spectral features, the relatively lower level features, can also achieve
good results.

frame-wise weighed unweighed
accuracy accuracy accuracy

3-layer MLP 41.4% 48.5% 39.9%
CL+2-layer MLP 43.1% 53.4% 41.6%

RCL+2-layer MLP 43.5% 53.6% 42.8%

(MFCC + pitch) MLP+SVM [12] - ∼ 50% ∼45%5

Log Spec + CNN [31] - - 35.98%
Log Spec + PCA whiten

+ CNN [31] - - 40.02%

Table 4. Speech emotion recognition results on IEMOCAP

5. CONCLUSIONS AND FUTURE WORK

Recently, a deep learning model called recurrent convolutional neu-
ral network (RCNN) was proposed for performing computer vision
tasks. In this work, we proposed to use this model for speech pro-
cessing. Experimental results on two benchmark datasets showed
that it was competitive with existing models. We conclude that this
structure can be used for processing both image and speech informa-
tion efficiently, which may inspire more generic and efficient cross-
modal deep learning models in the future.
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