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ABSTRACT

Different neural networks have exhibited excellent perfance on
various speech processing tasks, and they usually havdiset:
vantages and disadvantages. We propose to use a recerélgmy
deep learning model, recurrent convolutional neural nety@CN-
N), for speech processing, which inherits some merits afiren-
t neural network (RNN) and convolutional neural network (QN
The core module can be viewed as a convolutional layer engaed
with an RNN, which enables the model to capture both temzoradl
frequency dependance in the spectrogram of the speech
cient way. The model is tested on speech corpus TIMIT for phoa
recognition and IEMOCAP for emotion recognition. Experirte
results show that the model is competitive with previoushoés in
terms of accuracy and efficiency.

1. INTRODUCTION

NETWORK FOR SPEECH PROCESSING

Xiaolin Hu

Department of Computer Science and Technology,

TNList, Tsinghua University, Beijing 100084, China

2. RELATED WORK

CNN has been widely used in computer vision. Intuitivelyjsit
also applicable to speech recognition since the audio kicea
be converted via short-time fourier transform (STFT) intspeec-
trogram which can be viewed as a 2-dimensioage indexed by
the time-axis and frequency-axis. Despite some positigeltre
s, it has long been argued that CNNs overkill the variatiangl

g time-scale by pooling within a temporal window, resultimgdeep

fully-connected neural network’s dominance in modelingetivari-

ifiian edtion [17]. Abdel-Hamid et al. introduced!amited-weight-sharing

convolutional scheme [1, 2] and found that using convoluibng
the frequency axis or time axis increased recognition ayitbut
the improvement was less significant along the time axis. [levia
ate the problem, a bottleneck network was constructed iceptd
the pooling layer [29]. Furthermore, T6th in [28] proposeeat-
ing time-domain and frequency-domain separately and aetiie
the best performance on the TIMIT dataset by constructird su
hierarchical convolutional network.

Inspired by the temporal characteristics of speech, RNNghvh

Speech processing has been studied for decades. It haséeng b tries to predict the current frame based on feature infaomabllect-
dominated by the Gaussian Mixture Models (GMM) - Hidden ed from previous frames, has long been used in speech réicogni

Markov Model (HMM) [17] structure until the resurgence ofege
neural network (DNN) [20]. The first DNN successfully applie
to speech recognition refers to the multi-layer perceptidhP)
(when trained in an unsupervised way it is called deep beéefiork
[13]). MLP-HMM systems significantly improved the perfornte
of speech recognition on both small datasets [20] and lscgée
datasets [7]. In recent years, recurrent neural networkB\)Rsuch
as the long short-term memory (LSTM) and gated recurrertsuni
(GRU) have achieved even better results in speech recognkiow-
ever, RNNSs are generally hard to train because they cankefud
advantage of current highly optimized parallel computiagilfties
such as GPU. Convolutional neural network (CNN) is anotiessc
of popular deep learning model, but it has not exhibited ifzant
improvement over other models in speech processing.

Recently, Liang et al. [18, 19] proposed an integrated motlel
RNN and CNN, called Recurrent Convolutional Neural Netw@k
CNN), and successfully applied it to object recognition aedne
labeling. In view of the embedded RNN structure, it is expddb
function well in modeling speech because speech is a typipalof
sequential data, in which the information is temporallyatetl. This

tasks [23]. Due to its capability of modeling sequentialagd@®@NN
can be combined with HMM, or even replace HMM. In the latter
case, the model can be trained “end-to-end”, and for thipqae,
the connectionist temporal classification (CTC) [9] and RNisns-
ducer [8] were proposed to deal with the specific evaluatiefrim
for sequence labeling. Two special RNN models, Long ShertAl
Memory (LSTM) and Gated Recurrent Unit (GRU) are now wide-
ly used [10, 6] in speech recognition. These methods haweesho
good results in many tasks. One of their limitations referthe d-
ifficulty in training, and in practice, their performancédies heavily
on pre-training.

Several recent works attempted to combine CNN and RNN for
speech recognition. Amodei et al. proposed a CNN-RNN hybrid
model for Large Vocabulary Continuous Speech RecognitidCf
SR) [4]. Sainath et al. proposed an architecture, whiches@NN,
LSTM, and MLP [25]. In the two models, however, the CNN mod-
ule and RNN module are separated. A similar combination ateth
was proposed for text classification [16]. Recently, Liahglepro-
posed a deep learning model in which RNN and CNN were tightly
coupled [18, 19]. The hallmark of the model is that thereterisa-

is the primary motivation of the present work. We want to knowlayer recurrent connections among units in the convolatideyyer

whether this particular structure is suitable for speesthted appli-
cations. The experimental results on two speech procedsitagets
show that RCNN is efficient and effective, indicating thasia good
alternative in related applicatiohs

1The source codes can be downloaded at: https:/githulzb@amyue-
zephyrus/RecurrentConvNet-for-Speech.
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of CNN. This model was used in experimentes on static imdnes,
has not been tested on speech data.

3. METHODS

The core module inside RCNN is the Recurrent Convolutiosair
(RCL), whose state evolves over discrete time steps. Rewatlla
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generic RNN usually has a feed-forward inputt) and a hidden

stateh(¢) which depends not only on the input but also the hidden

state in the previous time step:

h(t) = F(x(t),h(t — 1),0)

where the functionF describes the dynamic characteristics of the

RNN, with parametef. In conventional RNN,F is realized by a
fully connected weight matrix and a nonlinear activationdtion
o(x):

h(t) = a(thx(t) =+ Whhh(t — 1) + bh)

In RCL, the connections are local and share the same weights

across the spectrogram, i.e., RCL is realized by convaiufenote
the feedforward input at positiofi, j) by x(*), and the state of the
hidden layer to b&?, then

s S
W3, 5) =a( > > wi@,)xWG—ii-j)
i'=—sjl=—s

s s

+ >0 > Wk =i =) +b)

wherew] andw}, are thek-th feed-forward kernel and recurrent
convolutional kernel, respectively. Both kernels are stat differ-
ent time stepso (z) = fn(g(z)) is a composition of two nonlinear
functions. The inner ong(x) can be either a conventional sigmoid
functiong(z) = 1/(1 + e~ %) or arectified linear unit (ReLU) [21]
g(z) = max{z,0}. A model with ReLU usually converges faster
and tends to achieve better performance compared to usngjgh
moid function. However, the faster convergence brings toblpm
of “exploding gradient”, which calls for smaller learningte and
necessary normalization. The outer functj{-) denotes an appro-
priate normalization function. The batch-normalizatioethod [14]

is adopted here. Specifically, (x:;v, 8) = v&: + 8, wherey and

[ are trainable parameters, and

g, = ZiZkB
g \/U%+€
1 m
s = T Zgﬂ:l Ti )
oB = Zi:1('ri - MB) .

Fig. 1. lllustration of a single RCL (left) and its unfolded versio
with 7" = 3 (right). The colored parallelograms in the bottom rep-
resent the input spectrograms. The upper ones stand foidterh
states. The dotted lines denote feed-forward connectioth$ree sol-

id lines denote recurrent connections.

shares the advantage of multi-dimensional recurrent heetaork
(MDRNN) [11], that is, modeling on recurrent relationshiprag all
possible dimensions not merely temporal dimension.

By stacking several RCLs, and optionally interleaved witolp
ing layers and other layers, a deep RCNN can be constructed. T
resembles how CNN is constructed based on convolutionarday
and other layers. In both computer vision applications greksh
recognition applications, it has been found that addingsé\iul-
ly connected layers (i.e., an MLP) on the top will boost thefque
mance of CNN [26, 24]. Inspired by this, we focused here on the
RCNN-MLP architecture in experiments.

4. EXPERIMENTS

Two speech processing tasks, phoneme recognition andamubdis-
sification, were considered in our experiments. In phonesnegni-
tion, RCNN was used to predict senones directly. In emotias-c
sification, RCNN is used for feature extraction, while thassifica-
tion is fulfilled by a support vector machine (SVM). All exjraents
were carried out on a NVIDIA GeForce GTX Titan Black GPU.

In the equations above; denotes the input feature to be normalized,4.1. Phonemerecognition

#; denotes the normalized featurajenotes a small constarity(~>
in our experiment)y.s denotes the mini-batch mean angl denotes
the mini-batch variance.

In implementation, an RCL is unfolded far time steps into a
multi-layer sub-network. See Fig. 1 for an example with= 3.
The receptive field (RF) of each unit expands with largerso that
more context information is captured by the unit. The deftthe
subnetwork increases with largét, while keeping the number of
parameters constant due to weight sharing across time steps

It is assumed that the input to an RGi(t) is the same across
time ¢, which is denoted by,. It is equivalently the output of the
previous layer. This assumption means that the feed-fahpart
contributes equally at every time step.

To understand the essence of the RCL, it is useful to claniy t
concept of time step in RCL. It is not identical to the timeaasated
with the sequential data, and instead it refers téteration during
processing the data. This is in sharp contrast with conveatiRN-
N, whose time step is identical to the time present in the.data
conventional RNN, the current state is updated accordinigere-
vious state, while an RCL processes information from neiginig
time slots and frequency banks at each iteration. In thisesdRCNN
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4.1.1. Dataset

TIMIT recorded 630 speakers, each reading ten phoneticedly
sentences. The TIMIT corpus was manually segmented andanno
ed using 61 phonemes. Excluding the SA sentences that akspe
ers read, the training and test sets consist of 3696 and 1344 u
ances, respectively. 192 utterances among the complétsetesre
prescribed to be a core test set. We also report our resultpre-a
defined development set, a subset of 400 utterances froraghssit.
10% (369) utterances were randomly drawn from the trainingaet f
automatically adjusting learning rate during training.

4.1.2. Experimental setup

The raw speech data recorded at a sample rate of 16 kHz waséirst
processed via a short-time Fourier Transform with 40 filtenks
distributed on a mel-scale, into 25 ms-long frames, at deswf 10
ms. The first and second temporal derivatives were alsodedyu
which were concatenated to be a 120-dimension feature vemto
each frame. The coefficients were then normalized so thytithe
a mean of 0 and variation of 1 over the training set.



model layer kernel siZe stride  #of channels  batch norm devsel core test set
CLrpoolng O Pr U 128 ; 4-layer MLP 19.9% 22.0%
CL+CL+pooling CL1 (15,8) @1 128 no CL+pooling+3-layer MLP 18.4% 20.0%
CcL2 (7.3) (1.1) 128 no CL1+CL2+pooling+3-layer MLP 19.2% 20.5%
~ pooling @1) @1 - RCL(1)+pooling+3-layer MLP 18.3% 20.3%
ROL@spooling ROLfomrd  (122) (4D 128 yes RCI(3)+pooling+3-layer MLP 173%  19.2%
pooling (4.1) 4.1) . . RCL(3)+pooling+3-layer MLP 17.5% 19.3%
RCL(2)+pooling  RCL forward (11,2) 11 128 yes RCL(2)+CL+3-layer MLP 17.0% 18.0%
RCL recurrent (15,5) 11) 128 yes
pooling (15,1) (15,1) - - DBN [20] . ) ) 20.7%
RCL(3)+pooling  RCL forward (11,3) 1.1 128 ves CNN (limited weight sharing) [1] - 20.5%
RCL recurrent (11,3) 11) 128 yes bottleneck CNN [27] 16.1% 18.6%
pooling 151 (151 : - 3-layer LSTM + HMM [30]' 17.7% 18.8%
RCLE@)+CL RngI'_‘ ::E"L‘I’f:;dm ((13;52)) 83 igg {/Zi 3-layer LSTM + pre-trained transducers [10] - 17.7%
cL (16,’2) (Li) 256 no Attention model [6] 15.8% 17.6%
time- and frequency- domain convolution [28]  14.2% 17.6%
P ) time- and frequency- domain convolution
Table 1. Description of the first part of the models before the 3-taye )
P P Y€ with dropout) [28] 139%  16.7%

MLP used for TIMIT phoneme recognition

For a frame at time, a patch ranging from— A to ¢t + A on the
time axis was extracted, which included all filter-bank fic&fnts
on the frequency axis. The spectrogram fed into a model ag inp
had three channels consisting of static coefficients anfficeats of
the first and second temporal derivatives, respectivelgrdfore, the
input patch was of siz& x A+1) x40 x 3. In all experimentsA =
5. The network was trained using the stochastic gradientestsc
(SGD) with automatic adjusting of the learning rate. Theirbaich
size was 200. The initial learning rate was set tdl¥ per batch
and was annealed to half of its original value if the accuraeyhe
validation set stopped increasing. The momentum was 0.9.

Table 2. Results of different models on TIMIT phoneme recogni-
tion.

train decode

RCNN
LSTM

2012 samples per second
275 samples per second

1.721 utterances per second
0.944 utterances per second

Table 3. Comparison of speed between RCNN and LSTM

To generate the frame-level label, a conventional context-
dependent (CD) HMM of 1954 senones was used with the asséstan propriate size of input for posterior MLP, a pooling layesstride 15
of the Kaldi toolkit [22]. The phoneme label outputs were pegh  was used in most models, which may render a loss of tempdat in

to the usual set of 39 labels for evaluation. The ultimateltegas
based on phoneme error rate (PER).

We tested different models on CNTK [3], all of which used the
same 3-layer MLP (each layer had 2048 units) in the end. Tinen t
difference between different models would mainly come fribra
difference in other layers. Table 1 lists settings of thaffereént lay-
ers in different models, where CL denotes convolutionaétay he
number in parentheses for each RCL denotes the number dfleinfo
ing time stepd’. All CLs and RCLs used ReLU while all MLP lay-
ers used sigmoid function as activation function. Besidestodels
described in Table 1, a 4-layer MLP was also tested with 2048 u
in every layer.

4.1.3. Results

The results of these models are listed in Table 2. Consigeha

mation. By replacing the pooling layer with a CL, PER deceett®
18.0%.

We compared the results with existing models in the liteeatu
(see the lower part of Table 2). Our best model outperformestm
of the ANN-HMM hybrid models. The exception was a network-in
network configuration [28], which was trained in two stepon€
pared with the recently developed RNN-based end-to-endefapd
such as the RNN transducer [10] and attention model [6], amdeh
was also competitive. However, our model converged faste rdid
not use pre-training. The best model in [10], which achiel/@d@%
PER, was based on a pre-trained transducer and was traingd4o
epochs. For RCNN, however, the model was trained withir-28D
epochs from scratch.

To compare the speed of RCL module with LSTM module, we
trained a 3-layer LSTM with 1024 cells per layer using CNTK on

same 3-layer MLP among the models, the first model in the tableur GPU server. The structure was borrowed from [30] (the-non
can be called MLP, the second and the third can be called CNdN, a highway version). An HMM, instead of a pretrained transdpeas

the models with RCL can be called RCNN. From MLP, CNN to used on top of the LSTM. The mini-batch size was set to 200, the
RCNN, a progressive decrease in PER was observed. The dempasame as for RCNN. Results showed that RCNN was faster both in
son between the 1-layer and 2-layer CNNs (the second andlitde t training and decoding phases (Table 3). We attribute tHerdifice
models in Table 2) confirmed the fact that for small-scalgpusrs-  to heavily optimized convolution operation in CNTK.

tacking more convolutional layers may be harmful and carethus

to use a single RCL layer in the RCNN models. We found that un-
folding more time steps may yield lower PER (compare thetfour
and fifth models in Table 2) but there was a limit. To achievaypgn

3The selection for the development set may vary with diffegrihors.
4The original paper works on another dataset. We use thetsteubere

2The tuple (V¢, N¢) corresponds to the frequency- and time- axis, and soonly to compare the speed between RCNN and LSTM so the peafaren
is the stride size. may not be tuned perfectly. See in 4.1 for further discussion
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4.2. Emotion recognition
4.2.1. Dataset
The IEMOCAP dataset [5], short for The Interactive Emotiona

> # of correct utterances for emotion
# of utterances for emotioh

Unweighed Accuracy= é

i=1

Dyadic Motion Capture, consists of approximately 12 houfs o04.2.3. Results

audio-visual data and was annotated by multiple annotatirsce
different annotators may give different judgments, laheith the
majority of annotators were used in order to avoid ambiguitye
only considered utterances with labels from the following fe-
motions: excitement, frustration, happiness, neutral sungbrise.
Among the 5300 utterances left after the filtering procegmopor-
tion of 80% was randomly selected for training and the reigin
were used for test.

4.2.2. Experimental setup

The input to the models consisted of 25-frame segments &ncbth
responding labels. Three models were constructed. Therfodel

We compared the classification accuracy using segmeritdese
tures from different layers and found that those from thehatden
layer performed best. All results reported in Table 4 areebam
those features. Besides weighted accuracy and unweightedaa
cy, Table 4 also shows the frame-wise test accuracy duriggeet-
level training. Among the three models, RCNN performed testb
in terms of both weighed and unweighed accuracy. Compartd wi
models in the literature, RCNN has achieved competitivelltes
Note that it is claimed in [12] that using spectral featuresdered
unsatisfactory performance and, as a result, MFCC plubbiésed
features were used in [12]. Our results indicate that usi@iyR, the
spectral features, the relatively lower level features,aao achieve

was an MLP with 3 hidden layers. The second was a CNN consisgood results.

ing of a CL with a 2-hidden-layer MLP. The third was an RCNN
consisting of an RCL with a 2-hidden-layer MLP. Each fullyneo
nected hidden layer had 256 units with the ReLU activatiamcfu
tion. For RCL, the feed-forward kernel siZ&V;, N;) was (9, 9)
and the recurrent kernel siZ&V, N;) was (7, 5), and the number

of unfolding time steps was 2, such that the RCL unit could see
the whole input. The number of channels was 64 for both feed
forward and recurrent part. For comparison, the CL had 128 co

volutional kernel with(Ny, N;) = (9, 9) along with a max pooling
layer of size(2,2) and stride(2, 2) such that the number of learn-
able weights were comparable. Nonlinearity was realizeRéyU
and local response normalization (LRN) [15] with hypergraeters
a=10"38=0.75,k=1,n=9.

After segment-level optimization, the segment-level features
were extracted and merged into amterance-level feature for
utterance-level classification according to a previouglyst[12].
Letf = [f{"(1),---, £ (D)] denote theD-dimensional feature
extracted from thé-th layer for thes-th segment. For an utterance
with segmentS = {1,---, S}, the utterance-level featufé” is
defined as

S
W _ ) p _ e o) _ 1 0)
fi"’ = max £’ £ = min ;) £ = S Z f,

1 ) 1 W)
E[ (z),..‘} {H’EZ [fs (Z)>9]’.‘.}

The first three vectors of feature can be viewed as a poolirigen
manner of maximizing, minimizing, and averaging along &l-s
ments of a single utterance. The last vector is the percertbgeg-
ments whose activation on each neuron in the feature mamisab
a certain threshold.

After the fixed-length utterance-level features were olgdj an
SVM classifier was trained to predict the utterance-levietls. S-
ince the utterances were not evenly distributed among ematit-
egories, both weighed and unweighed accuracy were cadclfat
evaluation, as in [12]. The weighed accuracy is the accuoadhe
whole test set, with every utterance’s contribution being $ame,
while the unweighed accuracy is the averaged accuracy awtre
motion class, which better reflects overall accuracy in tiesgnce
of an imbalanced class.

O]
1 J4

£ =

# of correct utterances
# of utterances

Weighed Accuracy=
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frame-wise  weighed  unweighed
accuracy ~ accuracy  accuracy
3-layer MLP 41.4% 48.5% 39.9%
CL+2-layer MLP 43.1% 53.4% 41.6%
RCL+2-layer MLP 43.5% 53.6% 42.8%
(MFCC + pitch) MLP+SVM [12] ~ 50% ~45%°
Log Spec + CNN [31] - - 35.98%
Log Spec + PCA whiten
+ CNN [31] - - 40.02%

Table 4. Speech emotion recognition results on IEMOCAP

5. CONCLUSIONSAND FUTURE WORK

Recently, a deep learning model called recurrent conwaiatineu-
ral network (RCNN) was proposed for performing computerovis
tasks. In this work, we proposed to use this model for speech p
cessing. Experimental results on two benchmark datasetsesh
that it was competitive with existing models. We concludat tifis
structure can be used for processing both image and speecmas
tion efficiently, which may inspire more generic and effitieross-
modal deep learning models in the future.

Acknowledgement: This work was supported in part by the Na-
tional Basic Research Program (973 Program) of China undamtG
2013CB329403, in part by the National Natural Science Fatiod
of China under Grant 61273023, Grant 91420201, Grant 618320
and Grant 61621136008, and in part by the German Research Fou
dation(DFG) under Grant TRR-169. Zhao and Jin were also@typp
ed by the National Training Program of Innovation and Enteepur-
ship for Undergraduates under Grant 201510003036.

6. REFERENCES

[1] O. Abdel-Hamid, L. Deng, and D. Yu. Exploring convolutio
al neural network structures and optimization techniques f
speech recognition. Imterspeech, pages 3366—-3370, 2013.

5The results are read from a bar chart (Figure 3) of [12].



[2] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn [17] K.-F. Lee and H.-W. Hon. Speaker-independent phonegec

(3]

(4]

(5]

(6]

[7

—

[8

[}

[9

—

[10]

[11]

[12]

(13]

[14]

[15]

[16]

and D. Yu. Convolutional neural networks for speech recog-
nition. IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 22(10):1533-1545, 2014.

A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers,[18]

J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, R. Hoen-
s, et al. An introduction to computational networks and
the computational network toolkit. Technical report, Tech

Rep. MSR-TR-2014-112, August 2014.[Online]. Available: [19]

http://research. microsoft. com/apps/pubs/defaultx,azpl4.

D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos,

et al. Deep speech 2: End-to-end speech recognition insgngli [20]

and mandarinarXiv preprint arXiv: 1512.02595, 2015.
C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower,

S.Kim, J. N. Chang, S. Lee, and S. S. Narayanan. lemocap: If21]

teractive emotional dyadic motion capture databaseguage
Resources and Evaluation, 42(4):335-359, 2008.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and
Y. Bengio. Attention-based models for speech recognition.
Advancesin neural information processing systems, pages 577—
585, 2015.

G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-depertden
pre-trained deep neural networks for large-vocabulargcpe
recognition. |[EEE Transactions on Audio, Speech, and Lan-
guage Processing, 20(1):30—42, 2012.

A. Graves. Sequence transduction with recurrent nengéd
works. arXiv preprint arXiv:1211.3711, 2012.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber Co
nectionist temporal classification: labelling unsegmerge-
quence data with recurrent neural networksPinaceedings of

the 23rd international conference on Machine learning (ICM-

L), pages 369-376. ACM, 2006.

A. Graves, A.-r. Mohamed, and G. Hinton. Speech redogmi
with deep recurrent neural networks. 2013 |EEE Interna-
tional Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6645-6649. IEEE, 2013.

A. Graves and J. Schmidhuber. Offline handwriting regeg
tion with multidimensional recurrent neural networks. Ad-
vances in neural information processing systems, pages 545—
552, 2009.

K. Han, D. Yu, and |. Tashev. Speech emotion recognition
using deep neural network and extreme learning machine. In
Interspeech, pages 223-227, 2014.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning [29]

algorithm for deep belief netdNeural Computation, 18:1527—
1554, 2006.

S. loffe and C. Szegedy. Batch normalization: Accdlata
deep network training by reducing internal covariate shifx-
iv preprint arXiv:1502.03167, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imageclessi-
fication with deep convolutional neural networks.Advances
in neural information processing systems, pages 1097-1105,
2012.

S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutidn
neural networks for text classification. RAAI, pages 2267—
2273, 2015.

5304

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(30]

(31]

nition using hidden markov modelsIEEE Transactions on
Acoustics, Speech and Signal Processing, 37(11):1641-1648,
1989.

M. Liang and X. Hu. Recurrent convolutional neural netk
for object recognition. IfProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3367-3375, 2015.

M. Liang, X. Hu, and B. Zhang. Convolutional neural netks
with intra-layer recurrent connections for scene labeling\d-
vancesin neural information processing systems (NIPS), pages
937-945, 2015.

A.-r. Mohamed, G. E. Dahl, and G. Hinton. Acoustic model
ing using deep belief networkd EEE Transactions on Audio,
Speech, and Language Processing, 20(1):14-22, 2012.

V. Nair and G. E. Hinton. Rectified linear units improve-r
stricted boltzmann machines. Rioceedings of the 23rd inter-
national conference on Machine learning (ICML), pages 807—
814, 2010.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Gleibe
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
et al. The kaldi speech recognition toolkit. ASRU, number
EPFL-CONF-192584. IEEE Signal Processing Society, 2011.

A. J. Robinson. An application of recurrent nets to phpnob-
ability estimation. |EEE Transactions on Neural Networks,
5(2):298-305, 1994.

T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl,
G. Saon, H. Soltau, T. Beran, A. Y. Aravkin, and B. Ramabhad-
ran. Improvements to deep convolutional neural networks fo
Ivesr. In2013 |EEE Workshop on Automatic Speech Recogni-

tion and Understanding (ASRU), pages 315-320. IEEE, 2013.

T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolu
tional, long short-term memory, fully connected deep nleura
networks. 1n2015 | EEE International Conference on Acoustic-

s, Speech and Sgnal Processing (ICASSP), pages 4580-4584.
IEEE, 2015.

K. Simonyan and A. Zisserman. Very deep convolutiorett n
works for large-scale image recognitiomrXiv preprint arX-
iv:1409.1556, 2014.

L. Téth. Convolutional deep rectifier neural nets foropk
recognition. Inlnterspeech, pages 1722-1726, 2013.

L. Téth. Combining time-and frequency-domain convio
in convolutional neural network-based phone recognititm.
2014 | EEE International Conference on Acoustics, Speech and
Sgnal Processing (ICASSP), pages 190-194. IEEE, 2014.

K. Vesel, M. Karafiat, and F. Grézl. Convolutive bottleneck
network features for Ivcsr. 12011 |EEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU), pages
42-47. |EEE, 2011.

Y. Zhang, G. Chen, D. Yu, K. Yaco, S. Khudanpur, and
J. Glass. Highway long short-term memory rnns for distant
speech recognition. 18016 |EEE International Conference

on Acoustics, Speech and Sgnal Processing (ICASSP), pages
5755-5759. IEEE, 2016.

W. Zheng, J. Yu, and Y. Zou. An experimental study of siree
emotion recognition based on deep convolutional neural net
works. InInternational Conference on Affective Computing

and Intelligent Interaction (ACII), pages 827-831. IEEE, 2015.



