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ABSTRACT

Multilingual (ML) representations play a key role in
building speech recognition systems for low resource lan-
guages. The IARPA sponsored BABEL program focuses
on building speech recognition (ASR) and keyword search
(KWS) systems in over 24 languages with limited training
data. The most common mechanism to derive ML represen-
tations in the BABEL program has been with the use of a
two-stage network, the first stage being a convolutional net-
work (CNN) from where multilingual features are extracted,
expanded contextually and used as input to the second stage
which can be a feed-forward DNN or a CNN. The final multi-
lingual representations are derived from the second network.
This paper presents two novel methods for deriving ML rep-
resentations. The first is based on Long-Short Term Memory
(LSTM) networks and the second is based on a very deep
CNN (VGG-net). We demonstrate that ML features extracted
from both models show significant improvement over the
baseline CNN-DNN based ML representations, in terms of
both speech recognition and keyword search performance and
draw the comparison between the LSTM model itself and the
ML representations derived from it on Georgian, the surprise
language for the OpenKWS evaluation.

Index Terms— LSTM, VGG, multilingual, acoustic
model, keyword search

1. INTRODUCTION

Multilingual ASR has been investigated over the last two
decades. With the recent success of Deep Neural Networks
(DNNs), and their ability to generalize and learn useful acous-
tic representations of languages, there has been increased
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interest in using neural network based multilingual repre-
sentations. Multilingual (ML) models have been shown to
outperform unilingual models for ASR in low resource lan-
guages [1, 2]. The IARPA sponsored-BABEL program has
demonstrated their advantages in keyword search (KWS)
tasks [3, 4, 5, 6, 7]. ML models are also used in the Spoken
Web Search Task held as part of MediaEval Benchmark [8].

The most popular framework for deriving these ML rep-
resentations remains the hierarchical, two-stage DNN-DNN
or CNN-DNN architecture [5, 7]. The first stage is typically
a convolutional network (CNN) from where multilingual fea-
tures are extracted, expanded contextually and used as input
to the second stage which can be a feed-forward DNN or a
CNN. The final multilingual representations are derived from
the second network. In this paper, we propose two novel
ML representations. Inspired by the recent success of Long-
Short Term Memory(LSTM) networks as acoustic and lan-
guage models, and the use of very deep convolutional neu-
ral networks as acoustic models [9], we explore these archi-
tectures for deriving ML representations. We demonstrate
that these architectures lend themselves to the extraction of
better ML representations than the well-benchmarked, hier-
archical CNN-DNN architecture on the Babel Optional Pe-
riod 3 (OP3) surprise language (Georgian) evaluation. Given
the large amount of data (approximately 1000 hours spanning
24+ languages) used for ML training, the derivation of good
ML representations from complex, state-of-the-art networks
can be very time consuming. We demonstrate that these new
ML representations can be produced in one-fourth the train-
ing time of the baseline CNN-DNN representation.

The rest of the paper is organized as follows. Section 2
introduces the proposed LSTM and VGG architectures to de-
rive ML representations. Section 3 covers details on training
these networks and experimental results obtained with two
different implementations of the VGG-inspired ML feature
extractors. Next, we explore LSTM-based ML representa-
tions (Section 4). These representations not only improved
ASR and KWS performance, but also shortened the training
time significantly. We present the impact of fine-tuning the
ML network on the target languages with different strategies
in Section 5 and compare the performance of a system trained
with LSTM-based ML representations with the LSTM acous-
tic model directly.
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2. PROPOSED ARCHITECTURES FOR ML
REPRESENTATIONS

Convolutional neural networks (CNNs) have become an im-
portant class of machine learning models, achieving state-of-
the-art results on tasks in computer vision [10] and speech
recognition [11, 12]. Very deep “VGG” style convolutional
networks were introduced in [13] for the computer vision
domain as a submission in the ImageNet classification chal-
lenge. The central idea is to replace convolutional layes with
large kernels with a stack of small 3×3 layers, increasing the
depth and nonlinearity. VGG style CNNs were introduced as
acoustic models in the speech domain [9], and demonstrated
strong performance on the English conversational telephony
task. Multilingual deep CNNs were introduced in [9, 17],
though only in a small scale (18h of data) and for ASR eval-
uation only. These multilingual CNNs were analogous to
multilingual DNNs, but with the additional variation of un-
tying multiple fully connected layers per language. Long
Short Term Memory (LSTM) networks were first introduced
in [14] to overcome vanishing and exploding gradient is-
sues in training recurrent networks for modeling sequences.
LSTMs incorporate temporal memory using memory gates,
control error flow through input gates and use forget gates
to adaptively reset the cell’s memory. Deep LSTM networks
have been successfully used in ASR [15, 16]. We propose the
use of these deep CNNs and LSTMs as feature extractors.

3. DERIVATION OF VGG-BASED ML
REPRESENTATIONS

3.1. VGG-1

The first VGG-based ML feature stream, VGG-1, is trained
on data from 24 Babel languages, and uses a two-stage,
stacked bottleneck architecture. The first-stage CNN is con-
figured in a VGG style architecture consisting of five con-
volutional/pooling layers followed by five fully connected
layers, where the fourth is a bottleneck layer. The convolu-
tional layers employ 3 × 3 windows and the corresponding
pooling layers employ 3 × 1 windows (that is, they perform
max-pooling in frequency, but not in time) . Both the convo-
lutional and pooling layers use a stride of 1 × 1. The input to
the first stage bottleneck CNN is 40-dimensional log-Mel fea-
tures with temporal deltas and double deltas, which amounts
to three input feature maps. The numbers of feature maps
used in the five convolutional layers are 128, 128, 128, 128,
and 256. These were determined empirically. In the fully
connected layers, the bottleneck layer has 80 hidden units
while the rest have 1024 hidden units. The last hidden layer
is connected to the output layer with 3000 output units from
22 languages and 2500 output units from 2 languages. Sig-
moid activation functions are used in the convolutional and
fully connected layers while softmax functions are used in
the language-specific output layers.

In the second stage of the VGG-1 pipeline, a bottleneck
DNN with only fully connected layers is used. The input to
the second stage DNN is the output of the bottleneck layer
of the first stage CNN augmented with its four preceding and
following frames. There are five hidden layers in total and the
fourth one is a bottleneck layer. The bottleneck layer has 80
hidden units while the rest have 1024 hidden units. Like in the
first stage CNN, the last hidden layer is connected to the out-
put layer with 3000 output units from 22 languages and 2500
output units from 2 languages. Sigmoid activation functions
are used in all hidden layers and softmax functions are used in
the language-specific output layers. The ML representations
are derived from the linear output of the bottleneck layer.

The final VGG-1 features are speaker-adapted. To com-
pute the speaker-adapted feature stream, 9 successive frames
of raw features are spliced into a supervector, projected to 80
dimensions using an LDA transformation, and subsequently
diagonalized using a global semi-tied covariance (STC) trans-
form. Finally, a single CMLLR transform is learned per con-
versation side to further normalize the features. These are the
speaker-adapted, ML VGG features.

3.2. VGG-2

The second VGG-based ML feature stream, called VGG-2,
is trained on the 24 Babel languages and the data (Full Lan-
guage Pack of 40hours) provided for Georgian, which was the
surprise language in the evaluation. Similar to VGG-1, VGG-
2 takes 40-dimensional log-Mel features with temporal deltas
and double deltas as input. The VGG-2 network comprises
12 convolutional layers, with a max-pooling layer inserted
after every 3 convolutional layers, followed by 5 fully con-
nected layers. The network uses language-dependent output
layers, similar to the VGG-1 network and the baseline hierar-
chical, CNN-DNN, multilingual network. All hidden layers
use ReLU nonlinearities, while the outputs use softmax non-
linearities. The first convolutional layer uses 7 × 7 kernels,
while all remaining layers use 3 × 3 kernels. The convo-
lutional layers output 64, 64, 64, 128, 128, 128, 256, 256,
256, 512, 512, and 512 feature maps, proceeding from the
first layer to the twelfth. The first two pooling layers down-
sample in frequency by a factor of two, but do not downsam-
ple in time, while latter two pooling layers downsample in
time and frequency by a factor of two. The five fully con-
nected layers contain 2048, 2048, 2048, 256, and then 3000
or 2500 units (depending on the number of HMM states used
for a given language). Training uses the variant of batch nor-
malization [18] described in [17] and Nesterov’s accelerated
optimization with momentum. In contrast to [9], in order
to accommodate the bottleneck layer before the output layer
shared across all languages, we do not untie more than one
layer. The final ML representation is derived from the fourth,
fully-connected, 256-unit bottleneck layer.
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4. DERIVATION OF LSTM-BASED ML
REPRESENTATIONS

We trained two multilayer bidirectional LSTMs on logmel +
∆ + ∆∆ features. The LSTMs share a common architecture
consisting of 4 layers with 1024 cells per layer (512 per direc-
tion), a bottleneck layer of 256 units, and an output layer of
size 3000, but differ in the type of training data. The output
layer uses a softmax non-linearity. The first LSTM (LSTM-1)
was trained on 24 languages with the cross-entropy objective.
The second LSTM (LSTM-2) was initialized with the fully
CE-trained multilingual LSTM and fine-tuned on the evalua-
tion language (Georgian) training data. The sequence training
criterion used was sMBR with cross-entropy smoothing [19].
For the second LSTM, we also experimented with varying
the number of outputs by growing phonetic decision trees to
3000, 6000 and 10000 leaves. The final ML representation is
derived from the 256-unit bottleneck layer.

5. EXPERIMENTAL RESULTS

5.1. Acoustic and Language Models

Context-dependent realizations of graphemic targets serve as
the output units for the neural networks used throughout this
paper. The acoustic models presented in this paper are DNNs
built on ML features, unless explicitly stated. They only differ
in the input feature representations and are all trained with:
(1) Layer-wise discriminative pretraining using stochastic
gradient and cross-entropy loss, (2) Cross-entropy training
with Stochastic gradient, and (3) Distributed Hessian-free
optimization and the state-level minimum Bayes risk loss.

The input features used to train these acoustic models are
either the ML representations derived from the baseline CNN-
DNN, VGG or LSTM architectures. This final DNN has 5
hidden layers with 1024 hidden units in each layer and one
output layer with 3000 output units. ReLU activation func-
tions are used for the three bottom-most hidden layers and
sigmoid activation functions are used for the top-most hidden
layers. Softmax functions are used in the output layer.

Two baseline ML models were trained. The ML repre-
sentations for both were derived from the hierarchical CNN-
DNN architecture. One ML representation was derived from
a network trained with 24 languages, referred to as ML-24.
The other, referred to as ML-28, was trained with 24 lan-
guages and in addition, English, Arabic, Mandarin and Span-
ish. Each of these four new languages contain about 200
hours of training data. The language model is a bigram model
built on 95M words (Full Language Pack plus web text), with
a lexicon of 313K words. The decoder and on-the-fly lattice
generation used for key word search are described in [7].

5.2. Baseline ML Features

Table 1 illustrates the speech recognition performance ob-
tained with the baseline, VGG-2 and LSTM-based ML rep-
resentations. None of these models have seen the target lan-
guage, Georgian, during training.

ML feature Cross-entropy sMBR loss
(WER %) objective (WER %)

ML-24 46.0 41.6
ML-28 45.1 41.6
VGG-2 44.9 41.4
LSTM-1 44.5 41.2
ML-24+
VGG-2 +LSTM-1 43.4 40.4

Table 1. Word Error Rates (WERs) of DNNs built on various
speaker-independent multilingual representations

It can be seen that the additional of the four new languages
did not make a difference in the performance of the ASR sys-
tem after sequence training, although a difference of 1% ab-
solute can be seen at the cross-entropy loss based training.
The speaker independent ML representations derived from
VGG and LSTM networks are slightly better than the baseline
ML representations. The last row in Table 1 is a DNN built
by fusing all three ML representations. The ML representa-
tions seem complimentary enough to provide a reduction in
WER of 1% absolute. The VGG-1 speaker adapted ML rep-
resentations yielded a WER: of 41.1%. Interestingly ,VGG-
2 speaker-independent ML representations performed similar
to VGG-1, even though the underlying network architectures
are also very different.

5.3. Fine tuning Strategies

In this section, we study the impact of fine-tuning the multi-
lingual networks on the target language, Georgian. The fine-
tuning strategy used for the baseline model was a few train-
ing iterations of the second DNN in the hierarchical architec-
ture on the target language. With the baseline ML-24 fea-
tures, this did not yield any further reduction in WER over
41.6% reported in Table 1. Fine-tuning of both CNN and
DNN stages, yielded a slight reduction in WER to 41.3%.
Exploring this strategy on the VGG net did not provide any
appreciable decrease in WER (44.7%). Next, we explored a
fine-tuning strategy of sampling equal parts of Georgian and
the 24 languages (fVGG-2). As can be seen from Table 2,
this was successful in adapting the features to Georgian while
roughly keeping the same performance on the other 24 Ba-
bel languages, yielding the best performing system at 39.7%
WER. However, with the LSTM-based ML representation,
we found that initializing with the cross-entropy trained mul-
tilingual LSTM (LSTM-1) followed by a few training passes
on the Georgian data, was sufficient to yield an absolute 0.5%
improvement in WER (LSTM-2).
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ML feature Cross-entropy (WER %) sMBR (WER %)
fVGG-2 42.7 39.7
LSTM-2 43.2 40.7

Table 2. Impact of fine-tuning the multilingual networks on
the target language

In Table 3, we present the ASR and key word search per-
formance of the two novel ML representations proposed in
this paper. The first two rows in the table correspond to the
two baseline ML features. It can be seen that the KWS perfor-
mance of the two systems is quite different even though the
ASR performance is identical. The fine tuned VGG-2 features
yield the best performance for ASR and keyword search.

Model WER MTWV
(%)

ML-24 41.6 0.681
ML-28 41.6 0.6947
VGG-2 41.4 0.6928
VGG-2 (fine tuned) 39.7 0.705
VGG-1 (speaker adapted ML features) 41.1 0.6942
LSTM-2 40.7 0.6993

Table 3. ASR (WER) and KWS performance (MTWV) of VGG
and LSTM based representations

5.4. Training Speed ups

The number of parameters in VGG-style CNNs is similar to
the classical 2-layer CNNs. However, the increased context
and number of convolutional layers makes for a significantly
larger amount of computation per frame (or per epoch). We
compensate for this increased computation per frame (w.r.t.
classical CNNs) in two ways. First, the number of frames be-
fore convergence is strongly reduced from 15 to 2 epochs with
no loss in performance. Second, our torch-based implementa-
tion lends itself to easy parallelization across multiple GPUs.
We use data parallelization, where a batch of 512 frames is
split into 4 batches of 128 frames. This provided an overall
speedup of a factor of 3.5 per batch. Training took 10.25 days
followed by equal parts finetuning (fVGG-2) for 1.25 days.

The LSTM implementation was done in Torch and is
based on NVIDIA’s highly optimized cuDNN 5.0 library.
Training of LSTM-1 took 7.7 days on a single K-80 GPU.
Training for LSTM-2 took 5 hours for CE and 20 hours for
SGD-based sequence discriminative training. This model
was one of the fastest models to train compared to the VGG
or baseline (approximately a month) models.

5.5. Decision Tree Sizes

In order to get the best possible performance, we experi-
mented with Increasing the number of leaves in decision trees
(on the target language) for the baseline, VGG and LSTM

networks. The word error rates and MTWVs for VGG and
LSTM based ML DNNs are presented in Table 4 and Table 5.
As can be seen, increasing the number of context-dependent
HMM states for the final DNN built off any ML representa-
tions is beneficial for both WER and KWS performance.

Model WER MTWV
ML28 41.1 0.6939
fVGG 39.4 0.7066

Table 4. Word error rates and MTWVs for baseline and VGG
ML features with 6000 output targets

# outputs (leaves) WER MTWV
3000 40.7 0.6993
6000 40.3 0.7115

10000 40.0 0.7129

Table 5. Word error rates and MTWVs for LSTM ML features
with different number of output targets

5.6. Comparison of LSTM and LSTM based ML features

Tabel 6 compares the performance of DNNs trained on the
baseline and fine-tuned LSTM-2 ML representations with
6000 output targets. We also explored using LSTM-2 di-
rectly in the KWS pipeline,(LSTM-2 direct) without using
it as a multilingual feature extractor. This gives a further
improvement in KWS performance, perhaps, due to denser
lattices while the WER stays the same. Although fine tuned
VGG based ML features (Table 4 show the best MTWV per-
formance among all the ML representations, the LSTM-2
direct model outperforms all ML representations in KWS
performance.

Model WER MTWV
ML-28 41.1 0.6939
LSTM-2 40.3 0.0.6993
LSTM-2 direct 40.0 0.7149

Table 6. LSTM performance with 6000 output targets

6. SUMMARY

We have presented two new architectures, based on VGG and
LSTM for deriving ML representations. The non-fine tuned
versions of these features are only slightly better in WER than
the CNN+DNN ML baseline. The fine-tuned VGG based ML
representations provides a 1.7% absolute reduction in WER
and a 0.01 absolute gain in MTWV for KWS. This is the best
among all ML representations. The LSTM based ML rep-
resentation are 1% absolute better than the baseline in WER
while matching the KWS performance. However, the LSTM
ML model when used directly for KWS gained 0.02 absolute1

in MTWV.
13% relative which is very significant in this task
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