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ABSTRACT

While recent advances in deep neural networks have lead to signif-
icant improvements in speech recognition, they have been applied
mainly to acoustic and language modeling. We instead apply the
models to bottleneck feature extraction. Several DNN, CNN, and
BLSTM-based bottleneck feature networks are compared using both
DNN and BLSTM acoustic models. Multiple variations in network
architecture and feature input are explored. Results are reported on
four languages from the IARPA Babel program. The shallow CNN
and BLSTM both improve performance by a similar amount. The
best network is a deep CNN and improves WER by 1.4% and ATWV
by 2% absolute compared to the baseline DNN network when using
a DNN acoustic model. Relative gains hold when using stronger
BLSTM acoustic models.

Index Terms— bottleneck features, deep neural network, babel

1. INTRODUCTION

Prior to the resurgence of deep neural networks for acoustic model-
ing in automatic speech recognition (ASR) [1], smaller neural net-
works had long been used for feature extraction. Neural network-
based features, also known as MLP features, provided a method for
applying discriminative training without the acoustic model. They
could potentially learn a feature representation more suitable for
GMM acoustic models than standard cepstral features. These fea-
tures could also be trained on large windows of input features, im-
plicitly giving the acoustic models access to a larger context, but
with a small feature vector.

The Tandem approach [2] trained a phone recognizer for use as
features in a GMM-HMM system. The phone posteriors, prior to the
final softmax, were used directly. As the final model was a GMM,
PCA was typically applied to decorrelate the final features. Often,
these features were concatenated with the original PLP features for
best performance [3]. Fontaine et al. [4] were one of the first to use a
bottleneck layer prior to the output layer for feature extraction. How-
ever, the number of targets and the network size were small, so the
dimensionality of the bottleneck layer differed little from the output
layer. The more modern structure with an additional hidden layer
after the bottleneck layer was demonstrated in [5] to significantly
outperform features based on the output of the networks. Since then,
the use of bottleneck features and their performance has increased
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greatly [6, 7], especially in the context of multilingual speech recog-
nition [8, 9].

Along with the typical deep neural network, a host of more so-
phisticated models and networks have been introduced. Convolu-
tional neural networks (CNN) exploit the local structure of filter-
bank features [10]. Long-short term memory networks (LSTM)—
and their bi-directional (BLSTM) variant—use a recurrent structure
to model long term temporal information to improve recognition
[11, 12]. Recent work has even combined all of these ideas into a
single model [13]. However, there has been little work in applying
these models to bottleneck feature extraction.

Vesely et al. did compare standard bottleneck features with sim-
ple CNN-based bottleneck features [14]. Several other studies have
mentioned the use of CNN-based bottleneck features, but without
much discussion of the features themselves [15, 16]. In this work
we compare using a DNN, two types of CNNs, and a BLSTM for
extracting bottleneck features. We demonstrate significant improve-
ments over the DNN-based baseline with both DNN and BLSTM
acoustic models on four languages from the IARPA Babel Project.
A detailed discussion of the bottleneck networks is presented in Sec-
tion 2. Section 3 describes the experimental setup. Results are pre-
sented in Section 4, and conclusions in Section 5.

2. BOTTLENECK FEATURE NETWORKS

2.1. Fully Connected Network

Even before the resurgence of deep neural networks, fully connected
networks were used to generate bottleneck or MLP features [5]. The
traditional structure of the network is two hidden layers, a single bot-
tleneck layer, and an additional hidden layer before the output layer.
Given that we are exploring more sophisticated and larger alternative
networks in this study, we also test increasing the number of hidden
layers in the traditional fully connected network. If other networks
provide better performance, we want to eliminate the possibility that
the only factor is increased size. While it is true that all networks
considered in this work are deep neural networks, we will refer to
the network with only fully connected layers as a DNN.

2.2. Convolutional Network

Popular among the image community, convolutional networks have
also found success in speech recognition [15]. The convolutional
neural network (CNN) exploits local correlations—both temporal
and across frequency—in the input features. Filters are learned and
shared across the entire input image. However, we have found that
with smaller datasets, the CNN does not perform as well as the DNN
for acoustic modeling [16]—likely due to the difficulty in applying
speaker adaptation to the input features. An alternative approach to
utilizing CNNs in ASR is for bottleneck feature generation.
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Initially, CNNs used the same network structure as DNNs, ex-
cept two convolutional layers were prepended to the network [10].
More recent work has used deeper networks with many more layers,
but smaller 3x3 filters [17]. While first introduced for image recog-
nition, the very deep CNNs—referred to as VGG networks—have
shown promising results in speech recognition [18]. They have also
been used in a multilingual setting [19]. In this work, we consider
the VGG network—the 8-layer variant with a max pooling layer af-
ter every two convolutional layers—in addition to the traditional 2-
layer CNN. In both cases the convolutional layers are prepended to
the bottleneck layer in the network, and the number of layers refer
only to the total number of convolutional layers. As the VGG net-
work uses a large number of layers, both the number of parameters
and training time increases. We explore using similar networks with
smaller filter sizes in an attempt to reduce the computational cost of
the network without hurting performance.

2.3. BLSTM Network

The final type of network is the recurrent network. In particular, we
use the bi-directional long short term memory (BLSTM) network
[12]. Memory cells allow the network to retain information over a
large time span. Our networks are based on the variant proposed in
[20] with peephole connections and a recurrent projection layer. In
our experience, and in this study, BLSTM acoustic models perform
better than DNNs and CNNs on the datasets used in this paper. Given
their strength in acoustic modeling, it is worth exploring their utility
in generating bottleneck features.

We explore only a single BLSTM network in this study. The
bottleneck feature network consists of three recurrent layers, with
the middle layer being a bottleneck layer. This differs from the other
type of networks as there are no fully connected layers in the net-
work. An alternative structure would use a fully connected bottle-
neck layer following the recurrent layers, however, we found train-
ing to be unstable using this approach and do not report results. We
have not previously seen BLSTM-based bottleneck features used for
ASR, but a recent study applied BLSTM bottleneck features to tex-
tual and intonation feature extraction [21].

3. EXPERIMENTAL SETUP

All experiments use languages from the IARPA Babel project. The
IARPA Babel dataset consists of conversational telephone speech for
25 languages collected across a variety of environments. The total
amount of transcribed audio data varies depending on the language
and condition. Our focus was on the full language pack (FLP) from
the fourth year—approximately 40 hours of transcribed audio for
the languages considered. The 10 hour development set is used for
testing. While we report results on WER, the primary focus is actual
term-weighted value (ATWV). ATWV is a keyword spotting metric
with values ranging from−∞ to a maximum of one. We use a set of
approximately 2000 keywords per language. The final ATWV score
is the average of the individual scores for each keyword. See [22]
for a more detailed discussion of ATWV.

We selected four development languages from the final year
of the program: Amharic (IARPA-babel307b-v1.0b), Guarani
(IARPA-babel305b-v1.0c), Igbo (IARPA-babel306b-v2.0c), and
Pashto (IARPA-babel104b-v0.bY). Igbo is initially used for deter-
mining input features and parameter setups for each type of network.
Once all training parameters are set, results are compared across lan-
guages. Only the transcribed audio was used for training trigram
language models, though we can obtain improved performance with

additional text collected from the web [23]. Pronunciations lexicons
were generated using simple G2P rules [24].

We use the Sage ASR toolkit [25] for building the system. Sage
is BBN’s newly developed speech-to-text transcription (STT) plat-
form that integrates technologies from multiple sources, each of
which has a particular strength. In Sage, we combine proprietary
sources, such as BBN’s Byblos [26], with open source toolkits, such
as Kaldi [27] and CNTK [28]. Sage also includes a cross-toolkit FST
recognizer that supports models built using the various component
technologies, and software supporting keyword search from Byblos
[29, 30, 31]. Two types of acoustic models are used in this work.
The first are 6 hidden layer DNNs with 2048 hidden nodes in each
layer. The second are 3-layer BLSTM networks. Each layer has
both a forward and backward direction with 512 memory cells and a
projection layer of 300 in each direction. Both acoustic models are
sequence trained.

Fig. 1. Bottleneck feature architectures. Each layer describes the
type of node and the number of parameters. The orange fully-
connected (FC) layers denote the number of hidden nodes. The blue
recurrent layers describe the number of memory cells and the num-
ber of recurrant projection nodes. The yellow convolution layers de-
note the dimension and number of filters, and the gray max pooling
layer denote the dimension of pooling.

All acoustic models use speaker adapted training (SAT) and the
final input to the acoustic model is 13 spliced frames of fMLLR-
transformed bottleneck features without delta features. The net-
works used for bottleneck feature extraction were trained using
CNTK. For the DNN and CNN, we use ReLU activation units
and batch normalization [32] during training. Batch normalization
greatly improved the speed of convergence for the CNN and DNN
bottleneck feature extractors; it also improved performance when
not using pretraining. We also attempted to use batch normalization
for BLSTM training, but it did not improve convergence or perfor-
mance. All fully-connected hidden layers use 1500 hidden units
and a bottleneck layer of size 40. Preliminary experiments with
larger sizes did not improve performance, but larger values have
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BN Network w/ Deltas w/o Deltas
2-Layer DNN 56.8 56.5
2-Layer CNN 56.1 55.0
BLSTM 55.3 55.3

Table 1. WER Results on Igbo when using delta features as input to
the bottleneck network.

been shown to help in the multilingual setting [33]. Inputs to all BN
networks are 13 frames of 32-dimensional filterbank features with
pitch features [34]. For the CNN, the filterbank and pitch features
are treated separately; a parallel fully-connected network uses the
pitch features and the output is concatenated with the output from
the CNN before the bottleneck layer. The two-layer CNN uses a
9x9 convolution followed by a 3x3 convolution. The number of
filters is 128 and 256, respectively. The VGG model uses only 3x3
convolutional layers with the number of filters ranging form 64 to
512. Smaller VGG models are also considered where the number
of filters is reduced by a constant factor at each layer. The BLSTM
BN network uses a similar structure and parameters to the BLSTM
acoustic model previously described. A detailed representation of
the networks can be seen in Figure 1.

4. RESULTS

4.1. Delta Features

Delta and double-delta features have long been used in GMM-based
ASR. CNNs also typically benefit from the inclusion of delta fea-
tures. We experiment with including delta features with all three
kinds of networks for BN feature extraction. For the BLSTM and
DNN networks, the delta features are simply concatenated with the
static features. For the CNN, the three types of features all pass
through their own parallel convolutional network. Their outputs are
joined together before the bottleneck layer. While the use of delta
features only increase the input layer of the DNN and BLSTM by a
small amount, it effectively triples the number of convolutional lay-
ers.

Results are shown in Table 1. The delta features have minimal
effect on the DNN, but do not improve performance. Performance
with the CNN is more dramatic; delta features degrade performance
drastically. We have experimented with a large number of CNN vari-
ations and this pattern holds. Delta features always decrease perfor-
mance for CNN-based BN features, though, they are beneficial when
used in acoustic modeling.

One possibility for this reduction is as further context is added
to the bottleneck network, the bottleneck layer captures more infor-
mation about the surrounding context and less information about the
current frame. However, this is unnecessary as the final acoustic
model also uses a stack of input features. This would also explain
why the BLSTM sees no difference in performance with the delta
features. The BLSTM already captures information about a large
window given its recurrent nature; the introduction of delta features
does little to increase the amount of contextual information available
to the network. Another possibility is it causes the final acoustic
model to overfit, since both the acoustic model and the BN network
are trained on the same data. Given the failure of delta features to
improve performance, they are not used for any further experiments.

BN Network WER
2-Layer DNN 56.5
3-Layer DNN 56.1
4-Layer DNN 55.9
5-Layer DNN 55.9

Table 2. WER Results on Igbo using a DNN for BN feature extrac-
tion with different numbers of hidden layers before the bottleneck
layer.

BN Network Filter Size WER
2-Layer CNN full 55.0
8-Layer VGG full 54.1
8-Layer VGG half 54.2
8-Layer VGG quarter 54.8

Table 3. WER Results on Igbo for various CNN model configura-
tions.

4.2. Number of Fully Connected Layers

As we are comparing performance against very deep CNN models,
it may not be fair to just use the traditional DNN bottleneck feature
network for comparison. In Table 2 we show results using a larger
number of hidden layers prior to the bottleneck layer. The gains are
modest, but there is a definite trend from increasing the number of
layers. Both the four and five layer network give the same perfor-
mance. For further comparisons with other languages, we will use
the 4-layer network as our baseline.

4.3. CNN Model Structure

We are interested in varying the CNN model structure over various
dimensions. The first is the depth of the network, specifically, the 2-
layer CNN vs. the 8-layer VGG model. For the VGG model, we also
test whether we can reduce the total number of filters at each layer.
Training the larger VGG model is computationally more expensive,
so reducing the number of filters could significantly decrease train-
ing time and memory usage.

Results are shown in Table 3. Compared with the DNN results
in Table 2, the basic 2-layer CNN improves performance by almost
one point in WER. Moving to the larger VGG model doubles the
gain. While using the VGG model with only a quarter of the pa-
rameters, negatively impacts performance, the model with half the
number of parameters is nearly identical in terms of WER. Halving
the filter size approximately halves the training time as well. Since
the reduction in training time comes at no cost in performance, we
will use this reduced version of the VGG model for the remainder
of the experiments. Compared to Figure 1, this version uses half the
number of filters at each layer, starting with 32 and growing to 256.

4.4. Performance Across Languages

Now that we have chosen the input features and the model struc-
tures, we compare the DNN, CNN, and BLSTM-based BN features
on three additional languages, in addition to Igbo. WER results for
all models are shown in Table 4 and ATWV results are shown in
Table 5. Note that WER and ATWV measure separate aspects of
models and an improvement in one does not necessarily guarantee
an improvement in the other. Better features can sometimes produce
sharper models that only improve WER, but that is not the case with
these features. For three of the languages, the results are similar.
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BN Network Amharic Guarani Igbo Pashto
4-Layer DNN 43.4 45.9 55.9 48.4
2-Layer CNN 42.7 45.6 55.0 47.4
8-Layer VGG 41.6 45.3 54.2 46.8
BLSTM 42.4 46.1 55.3 47.1

Table 4. WER results using a DNN acoustic model with the various
bottleneck features.

BN Network Amharic Guarani Igbo Pashto
4-Layer DNN 0.599 0.553 0.351 0.416
2-Layer CNN 0.609 0.565 0.361 0.432
8-Layer VGG 0.622 0.568 0.375 0.446
BLSTM 0.604 0.562 0.364 0.438

Table 5. ATWV results using a DNN acoustic model with the vari-
ous bottleneck features.

Both the CNN and BLSTM model outperform the DNN by a simi-
lar amount, but the VGG features clearly give the best performance.
This is true for WER and ATWV.

Guarani does not follow this pattern in terms of WER. The
BLSTM features provide no gain, and even the VGG features give
less than one point improvement. Gains in ATWV are a little larger,
but still less than the other three languages. It is unclear why the
different bottleneck features would not perform as well for Guarani
as for the other languages. On average the gain for the VGG features
over the baseline is 1.4% absolute for WER and 2% for ATWV.
These gains are on the same order as we have previously seen with
joint decoding [16] and data augmentation [35].

4.5. BLSTM Acoustic Models

While the improvements from the VGG features over the baseline
DNN are good, we also wanted to test whether the gains would still
hold when using a stronger acoustic model. On average, the BLSTM
is 1.4% better in terms of WER, but there is no gain in ATWV. A
comparison of the VGG and DNN-based BN features are presented
in Table 6.

Overall the numbers are better than those with the DNN acoustic
model in Tables 4 and 5. Furthermore, the relative improvements are
just as good when moving from the baseline DNN-based features
to the VGG-based features. Improving the acoustic model did not
reduce the effect of the improved VGG-based features.

Language BN Network WER ATWV
Amharic 4-Layer DNN 42.2 0.573
Amharic 8-Layer VGG 40.7 0.607
Guarani 4-Layer DNN 45.1 0.553
Guarani 8-Layer VGG 43.3 0.576
Igbo 4-Layer DNN 54.0 0.368
Igbo 8-Layer VGG 52.7 0.389
Pashto 4-Layer DNN 46.6 0.423
Pashto 8-Layer VGG 45.7 0.438
Average 4-Layer DNN 47.0 0.479
Average 8-Layer VGG 45.6 0.503

Table 6. Comparison of the VGG-based and DNN-based BN fea-
tures using a BLSTM acoustic model across languages.

5. CONCLUSION

We have explored the use of the larger, more sophisticated models
typically used in acoustic modeling for bottleneck feature extrac-
tion. After establishing a DNN-based baseline, several alternative
structures were tested. Both the basic 2-layer CNN and the BLSTM
BN features gave similar performance across a set of four languages
when using DNN acoustic models. The VGG features significantly
outperformed all other features, even with half the number of filters
typically used. We should note that training the VGG and BLSTM
networks required a similar amount of computational effort. In con-
trast, the baseline DNN features could be trained in about one third
the amount of time. The effect on decode time was limited, though,
as the bottleneck feature extraction step is not typically the most
expensive part of decoding. We also demonstrated that the relative
gains from the VGG features held when using the stronger BLSTM
acoustic models, both in terms of WER and ATWV.
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