
FASTER SEQUENCE TRAINING

Albert Zeyer, Ilia Kulikov, Ralf Schlüter, Hermann Ney
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ABSTRACT

It has been shown that sequence-discriminative training can im-
prove the performance for large vocabulary continuous speech
recognition. Our main contribution is a novel method for re-
ducing the computation time of any sort of sequence training
while only slightly decreasing the overall performance. The
method allows to parallelize the forward propagation through
the network, the loss and loss gradient calculation which will
provide a frame-wise error signal, and an independent forward
and back propagation using that error signal. That last step can
be calculated in a frame-wise manner and thus allows to use
frame chunking to further improve the runtime. The loss cal-
culation can itself be parallelized over many sequences. In ad-
dition to several experiments which outline the runtime gains,
we also provide a convergence proof sketch. We extend on the
research of sequence training of bidirectional long-short term
memory ((B)LSTM) networks and provide an overview and
comparison over different criteria. We have published all the
code as part of our RETURNN and RASR framework includ-
ing our training setup configurations.

Index Terms— sequence training, LSTM, computation
time, parallelization

1. INTRODUCTION
Conventionally, for simplicity and speed-performance, we
train neural networks based on the frame-wise cross-entropy
criterion, at least as a first pass. Nevertheless, the evaluation
measure for ASR is word error rate (WER). Therefore, an
ideal training criterion would aim for minimum WER on the
training data.

A sequence-discriminative training criteria such as Mini-
mum Phone Error (MPE) or Maximum Mutual Information
(MMI) aim to consider hidden Markov model (HMM) con-
straints, lexicon and language model such that training corre-
lates more with the WER optimization than frame-wise cri-
teria. It is often performed as the final step after frame-wise
training because it requires lattices obtained from the baseline
model. From the literature, we can expect about 5-20% rela-
tive improvement in WER when applying sequence training
on a frame-wise trained model [1, 2].

We address the calculation runtime of sequence training

and present a novel method which can be applied to any
sequence-level criterion which enables faster calculation by
parallelizing parts of the calculation needed during sequence
training. We provide an analysis of the method, followed by
experimental results in order to demonstrate the speed gains
and the WER performance gains obtained.

Furthermore we provide comparisons over popular
sequence-discriminative criteria and study other aspects such
as the language model influence.

2. RELATED WORK
Sequence-discriminative training was already applied to
GMM-HMM-based systems [3, 4]. Later, it was shown that it
can also be applied on hybrid HMM-NN systems [5, 6, 7, 8, 1].
Other related work involving sequence training with (B)LSTM-
HMM can be found in [9, 10, 11]. In this work we extend the
results with deep BLSTM-HMM sequence training.

Recently, it was also shown how to train a model with
MMI criterion without lattice, thus it enables to apply sequence
training from scratch, i.e. without a frame-wise baseline [12].

Another sequence criterion which is often used and which
can also be used directly without a frame-wise pretraining step
is the connectionist temporal classification (CTC) criterion
[13], although CTC-training is usually still followed by MBR
at the end [14, 15, 16]. Our parallel training method can also
be applied to CTC and lattice-free MMI.

To the best of our knowledge, there is not much research
done about speeding up the sequence training methods. The
authors of [17, 9] apply asynchronous stochastic gradient de-
scent which is another form of parallelization which can be
applied in combination with our method. Our method even
works with a single copy of the model parameters.

3. SEQUENCE TRAINING
In this work we use a hybrid-HMM with deep BLSTM network
as the acoustic model. We prefer MPE based criteria like
Minimum Phone Error (MPE) and state-level Minimum Bayes
Risk (sMBR) which showed to outperform MMI criterion
[1, 8], cf. Table 3. Further, we use the following notation:
r is the spoken utterance, Xr is the acoustic observation for
utterance r, Wr is the word sequence for utterance r, and Sr
is the sequence of HMM states corresponding to Wr.
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The MMI criterion equals to the posterior probability of
the correct word sequence given a sequence of acoustic obser-
vations. We define the loss which we want to minimize as:

LMMI(θ) = −
R∑
r=1

log pθ(Wr|Xr)

= −
R∑
r=1

log
pθ(Xr|Wr)

κ · p(Wr)∑
W pθ(Xr|W )κ · p(W )

(1)

where

pθ(Xr|Wr) = max
Sr

Tr∏
t=1

pθ(xr,t|sr,t,Wr) · p(sr,t|sr,t−1,Wr)

and

p(Wr) =

Nr∏
n=1

p(wn|wn−1n−m+1).

In sequence training it is common to use an acoustic model
scale κ instead of using language model scaling. We set κ = 1

λ ,
where λ is the best language model scale from our baseline
recognition step. The language model is an m-gram count
model with Kneser-Ney smoothing. In the denominator of (1)
we apply usual approximation using a lattice to approximate
the summation.

The MPE criterion optimizes the average accuracy between
competing word sequences and the reference one. Depending
on the type of accuracy, MPE or sMBR can be defined. For
MPE accuracy is defined on the phone level, for sMBR it is
defined on the physical HMM states level. [3, 5]. The MPE
loss is given by

LMPE(θ) = −
R∑
r=1

∑
W pθ(Xr|W )κ · p(W ) · A(W,Wr)∑

W ′ pθ(Xr|W ′)κ · p(W ′)
.

4. PARALLELIZING THE LOSS COMPUTATION

For a given mini-batch zs and parameters θs, the loss L can be
written as a composed function

L(θs, zs) = L(y(θs, zs))

where y is the output of our model (here: neural network) and
thus the gradient becomes

∇θL(θs, zs) = ∇yL(y(θs, zs)) · ∇θy(θs, zs).
For calculating the gradients to perform stochastic gradient

descent (SGD), we will first calculate y and then L itself and
then, following the back propagation algorithm, we firstly
calculate∇yL(y(θs, zs)) and then the remaining∇θy(θs, zs).
Calculating y and L is usually called the forward propagation
and calculating the gradients is the backward propagation
of the error signals, where the top error signal is given by
∇yL(y(θs, zs)).

The idea is now to parallelize these calculations by dividing
them onto three steps:

1. First forward propagation, i.e. calculation of y for a
given θs and zs. Effectively, we do that for multiple
sequences in one mini-batch zs.

2. Loss and error signal calculation, i.e. calculation of L
and ∇yL. This will depend only on the previously cal-
culated y but otherwise not directly on θ.

3. Second forward propagation to calculate y, then reusing
the loss and top error signal from the previous step and
continue with backward propagation with further model
update θ.

The point of the second forward propagation is that θ will
have changed compared to the first forward propagation and
thus also all inner activations of the model. Hence, effectively,
the only approximation comes from a delayed error signal.
The SGD update rule can be written as

θs+1 = θs − γsUs
where γs is the learning rate in step s and Us is the update. In
the classic SGD

Us = ∇θL(θs, zs).
In our case we have

Ũs = ∇θL(θs−d, zs),
i.e. the gradient w.r.t. the model of d steps earlier.

Note that all this can be calculated in parallel. That is dif-
ferent from before, where forward propagation and loss calcu-
lation and backward propagation must be serial. In addition,
loss calculation can also be done in parallel for multiple se-
quences at once, as well as the first forwarding and also the
final forward and back propagation. As a result, when increas-
ing d, we can parallelize the loss calculation as much as we
want. Hence, we can decrease the total loss calculation time
almost as much as we want until it plays a minor role of the
total calculation time. One overhead from this method comes
from the additional first forward propagation.

The final forward and back propagation is actually on
frame-level because we have the error signal individually for
every frame. We can further gain on runtime improvements
by applying frame-level optimizations such as chunking, cf.
Section 5.

4.1. Convergence proof sketch
We will provide a sketch for the proof of the convergence of
this method. We will follow the proof of the convergence of
stochastic gradient descent (SGD) by Léon Bottou in [18]. We
want to find a minimum of L(θ) = EzL(θ, z). We will only
demonstrate the convex case here for simplification, i.e. we
assume a single minimum θ∗ of L. Also we assume that L
satisfies the condition

∀ε > 0, inf
(θ−θ∗)2>ε

(θ − θ∗)∇θL(θ) > 0

which states that the opposite of the gradient−∇θL(θ) always
points towards the minimum θ∗. We show that the Lyapunov
process

hs = (θs − θ∗)2

will converge to zero almost surely, i.e. with probability 1,
denoted as hs

a.s.−−−→
s→∞

0. In the original proof, one would need
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the condition
EzU(θ, z) = ∇θL(θ).

Unfortunately, this condition does not hold for Ũ . However,
when we assume that there exists A,B ≥ 0 such that
2

γs
· (θs − θ∗) · (∇yL(y(θs, zs))−∇yL(y(θs−d, zs))) · ∇θy(θs, zs)

≤ A+B · (θs − θ∗)2 (2)
and

E
(
Ũ(θ, z)2

)
· 2 ≤ A+B · (θs − θ∗)2

we can recover the proof given the same conditions on γs as
in [18]. Note that the formula in (2) is likely bounded but we
don’t show that here. We will get

E
(
hs+1 − (1− γ2sB)hs

)
≤ γ2sA

for some A,B ≥ 0 and via the quasi-martingale convergence
theorem it follows that hs converges. Then it also follows that

(θs − θ∗)∇θL(θs)
a.s.−−−→
s→∞

0

and thus hs
a.s.−−−→
s→∞

0 and θs
a.s.−−−→
s→∞

θ∗.

5. SEQUENCE SORTING AND FRAME CHUNKING

When we combine multiple full sequences in one mini-batch,
the calculation will usually take as long as the longest sequence.
If there is a huge variation in sequence lengths per mini-batch,
this will have a big impact on the processing time. One way
to overcome this is to sort the segments by length. To keep
some randomness in the segment order, we randomly shuffle
the segment order and then sort only batches of N segments
with N = 100.

Another way to speed up the computation time for
RNNs/LSTMs is to not train on the full sequence but use
chunks of the sequence. This is only applicable in a straight-
forward way for frame-wise criteria and not for sequence cri-
teria because you need to split up the targets in the same way.
Consider a sequence with 1000 frames, then we could divide
it into 10 chunks with 100 frames each. The processing of
those 10 chunks will be faster than the calculation of the full
sequence since we can calculate all chunks in parallel. The be-
havior of different chunking settings was studied in [19]. In
Table 1 we can see that frame-wise training with frame chunk-
ing is more than 45% faster than training on the full sequences.
Our parallel sequence training method will also allow us to
use frame chunking in the second forward propagation and
back propagation step, thus we can gain the same speed-up for
this step. In [20] we described a way to combine the outputs
of overlapping chunks to get back the full sequence. Then we
could do sequence training in the usual way but we didn’t in-
vestigate this possibility here.

6. IMPLEMENTATION AND CONFIGURATIONS

We use RASR [21, 22] to create the lattices and to calculate the
loss and loss gradient for all criteria which are presented in this
work. We use our Theano-based [23] framework RETURNN

Table 1: Training times for frame-wise trained systems, comparing
sequence frame chunking (50:25) (cf. Section 5) with training using
the full sequence, and additionally also sorting the sequences by
length.

system epoch time [secs]
chunking 1205
full seq 2331

full seq + sorting 2310

[24] to model the BLSTM and do control the overall training
procedure. The parallel training method described in this paper
is developed and published as part of RETURNN. We prepared
all config files for performed experiments here [25].

7. EXPERIMENTS
In this section we report experiments on the CHiME-3 speech
recognition task [26]. The CHiME-3 scenario is ASR for a
multi-microphone tablet device being used in everyday, noisy
environments. The dataset contains WSJ0 speech recordings
under different environment conditions such as public trans-
port, pedestrian area, street and café.

A BLSTM supported GEV beamformer front-end was used
as data processing and feature extraction [27]. A 2-gram LM is
preferred for lattice generation and training in order to provide
more variability for competing sequences in the lattice [6, 8].
and a 5-gram was used for recognition. The reported WERs
are measured on the real-noisy development and evaluation
data part from CHiME-3.

7.1. Baseline frame-wise trained system
In frame-wise and sequence training, our acoustic model is a
BLSTM with 3 hidden layers with 500 hidden units in each
direction, concatenated after every layer. We use dropout and
L2 regularization. Network optimization is done using mini-
batch RMSProp [28] with the frame-wise cross-entropy loss
function. The learning rate is controlled with some Newbob
variant [24].

7.2. Sequence-discriminative trained system
Lattice-based sequence training requires a lattice (word graph)
which approximates the search space. The word graph was
created using model trained frame-wise. In this work we pre-
pared several lattices using different pruning and LM history
length, cf. Table 2.

For lattice generation language model scale 12.6 was used
in all experiments. Prior distribution for states is computed
during frame-wise training from the NN output layer as pro-
posed in [30].

We checked the influence of LM history length on sMBR
sequence training, cf. Table 4. Based on our experience on
sequence training and results from Table 4, a weak language
model is preferred to be used during lattice generation and
training in order to provide more variability for the competing
word sequences in the word graph [31]. In addition, lattice
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Table 2: Properties of the lattices and impact of the language model
history length. T-WER means WER on the training data. GER is
Graph Error Rate (Oracle Word Error Rate) [29]. Density means
lattice density which is a factor of the number of arcs in the lattice
divided by the number of spoken words.

m-gram T-WER [%] GER [%] density
2 5.42 1.09 106

5.40 0.59 12388
4 4.71 1.40 33

4.71 1.32 89

Table 3: Serial sequence training results with small lattices (1st row
in Table 2)

system criterion WER [%]
dev eval

frame-wise baseline CE 6.49 8.43
serial seq. training MMI 5.79 8.18

MPE 5.53 8.16
sMBR 5.32 7.82

with density in the range 100 − 1000 and GER around 1%
gives good improvements.

We performed sequence training with weak a language
model using a number of sequence training criteria, cf. Table 3.
Training with sMBR gave the best performance on the CHiME-
3 task.

7.3. Parallel sequence training

We expect to reduce calculation time of the loss and back
propagation. For serial training, to compute one mini-batch
which involves copying the data to the GPU, forwarding, loss
calculation and back propagation, the total time is 1.23 secs.
on average with small lattices. The loss calculation takes 0.25
secs. (20%) and the back propagation 0.32 secs. (26%). For
the bigger lattices, the loss calculation takes 25% of the mini-
batch time.

In our experiments, we get a relative speedup of up to 24%
still using one GPU and our parallel sequence training method
(with chunking), cf. Table 5. Increasing the seq. delay d does
not have a large impact on the WER, cf. Table 6. Interestingly,
it seems to overfit more than the serial sequence training, and
less so for bigger seq. delays. We did not increase the number
of parallel threads in our experiments, although the extended
possibility to parallelize the forwarding and loss calculation
with a higher seq. delay d can in theory close the gap to get
the full speed-up by chunking as in Table 1.

Table 4: Comparison between sMBR sequence training using differ-
ent language model order (1st and 4th row of Table 2).

m-gram WER [%]
dev eval

2 5.32 7.82
4 5.53 8.07

Table 5: Training time comparison for sequence training with sMBR
with small and big lattices (1st and 2nd rows of Table 2). In all
experiments, the batch size is 5000. For parallel training, the chunk
size is 100, seq. delay d = 15.

lattices training epoch time WER [%]
[secs] dev eval

small serial 449 5.32 7.82
parallel 343 5.63 8.23

big serial 453 5.39 8.01
parallel 353 5.68 8.38

Table 6: Comparing seq. delays, parallel sMBR sequence training,
with small lattice (1st row in Table 2).

seq. delay d WER [%] epoch time
dev eval [secs]

15 5.63 8.23 343
30 5.72 7.95 342

100 5.75 7.92 341
1000 5.88 8.20 332

8. CONCLUSION & OUTLOOK

We presented a novel method which enables to parallelize
some of the calculations during sequence training and thus al-
lows us to run faster sequence training. It also allows to do
apply frame-wise training methods like chunking to further im-
prove the training time. In our experiments, we get a speedup
of up to 26%, although we showed that there is still a lot of
room for improvement. Note that Chime has quite short se-
quences — 644 time steps in average, so that the loss calcula-
tion is not so much a bottleneck for this case and we expect to
get more speedup on tasks with longer sequences.

Also, we outlined how to further modify the method to
increase the speed even more, e.g. by applying the method
from [20] for the first forwarding pass.

In our knowledge most academic groups use FFNN-HMM
sequence training and choose sMBR as a known best criterion.
Here we explored sequence training with deep BLSTM net-
works and different criteria such as MMI, MPE and sMBR.

9. ACKNOWLEDGEMENTS

We thank Jahn Heymann, Lukas Drude, Aleksej Chinaev and
Reinhold Haeb-Umbach for their CHiME-3 front-end which
we used in this work. The research was partially supported
by Deutsche Forschungsgemeinschaft (DFG) under Contract
No. Schl2043/11-1 and additionally, the research was partially
supported by Ford Motor Company.

10. REFERENCES
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