
END-TO-END SPEECH RECOGNITION AND KEYWORD SEARCH ON LOW-RESOURCE
LANGUAGES

Andrew Rosenberg, Kartik Audhkhasi, Abhinav Sethy, Bhuvana Ramabhadran, Michael Picheny

IBM TJ Watson Research Center
Yorktown Heights, NY, USA

ABSTRACT

In recent years, so-called, “end-to-end” speech recognition systems
have emerged as viable alternatives to traditional ASR frameworks.
Keyword search, localizing an orthographic query in a speech cor-
pus, is typically performed by using automatic speech recognition
(ASR) to generate an index. Previous work has evaluated the use of
end-to-end systems for ASR on well known corpora (WSJ, Switch-
board, TIMIT, etc.) in high-resource languages like English and
Mandarin. In this work, we investigate the use of Connection-
ist Temporal Classification (CTC) networks, recurrent encoder-
decoders with attention, two end-to-end ASR systems for keyword
search and speech recognition on low resource languages.

We find end-to-end systems can generate high quality 1-best
transcripts on low-resource languages, but, because they generate
very sharp posteriors, their utility is limited for KWS. We explore a
number of ways to address this limitation with modest success. Ex-
perimental results reported are based on the IARPA BABEL OP3
languages and evaluation framework. This paper represents the first
results using “end-to-end” techniques for speech recognition and
keyword search on low-resource languages.

Index Terms— keyword search, end-to-end speech recognition,
CTC, attention networks

1. INTRODUCTION

Speech recognition is a sequence to sequence classification prob-
lem. A sequence of acoustic observations X = {x1, . . . , xT } needs
to be mapped to a sequence of words W = {w1, . . . , wN}, solv-
ing P (W |X). Traditional speech recognition systems operate by
aligning acoustic observations to some segment (phonemes, context
dependent phones, graphemes, etc.). The acoustic model generates
segment hypotheses for each frame. These frame level hypotheses
are then mapped to word hypotheses using a hidden markov model
(HMM) and viterbi algorithm incorporating a pronunciation model
(lexicon) and language model.

End-to-end speech recognition approaches address the align-
ment problem differently, incorporating it into the optimization
framework. In this work, we explore two approaches to end-to-end
speech recognition: Connectionist Temporal Classification (CTC)
(Section 2.1), and RNN Encoder-Decoders with Attention (Atten-
tion) (Section 2.2). Both of these address the sequence to sequence
alignment problem directly in a neural network (Section 2.3). End-
to-end systems are appealing because 1) they promise to simplify
training, 2) they omit the iterative re-alignment process potentially
leading to globally optimal solutions, 3) they allow for more sophis-
ticated sequence models, in traditional systems sequence modeling
is limited to the HMM and other related variants. End-to-end ASR

has been applied to high resource languages like English and Man-
darin and well known corpora, including WSJ, Switchboard TIMIT,
and VoxForge ([1, 2, 3, 4, 5]). In this work, we evaluate the use of
CTC and Attention to low-resource languages as part of the IARPA
BABEL program (Section 3). We find that both systems are able to
generate competitive word error rates (Section 4).

The IARPA BABEL program is focused the problem of Key-
word Search (KWS), the task of localizing an orthographic (written)
query in a collection of speech. The simplest approach to KWS is to
use speech recognition to generate a (1-best) transcript of the speech
corpus, and treat this as a text search problem (ctl-f, grep, etc.) [6, 7].
However, even state-of-the-art speech recognition systems generate
a significant amount of errors (∼6-7% WER [8, 9]). Therefore all
state-of-the-art KWS approaches maintains a collection of less con-
fident hypotheses rather than generating a 1-best transcription, using
ASR to generate a lattice or confusion network of word hypothe-
ses and using this lattice (or some derivative representation) as a
search index. Moreover, a variety of approaches to address is prob-
lem have been proposed including query expansion [7], and subword
indexing where the index comprises, phone, morph or syllable units
[10, 11, 12]. For ASR to be an effective tool for KWS it needs to
generate high quality transcription, but it also needs to maintain a
rich hypothesis space. In this work, we evaluate the efficacy of end-
to-end ASR systems to the KWS index generation problem. De-
spite their competitive ASR performance, we find both end-to-end
systems to generate very peaky posteriors, resulting in poor KWS
performance (Section 5). We then investigate the use of these sys-
tems for representation learning, using embeddings from their oper-
ation as input to a more traditional HMM-DNN ASR/KWS system,
finding them to generate improved performance but still failing to
surpass a competitive traditional ASR system (Section 6).

2. END-TO-END SPEECH RECOGNITION

In this section, we define Connectionist Temporal Classification
(CTC) Networks and the RNN Encoder-Decoder with Atten-
tion (Attention-ASR). Both approaches address a sequence clas-
sification problem mapping a sequence of acoustic observations
X = {x1, . . . , xT } to a sequence of words W = {w1, . . . , wN}.
Both approaches will address this by solving a slightly simpler prob-
lem, mapping the sequence of acoustic observations to a sequence
of graphemes Y = {y1, . . . , yL}. In both cases, the mapping from
graphemes to words is solved by an inverted dictionary, and lan-
guage model. Though not the case for all sequence classification
problems, for speech recognition, we assume that N > L > T .
Critical to this problem is solving an alignment problem, mapping
graphemes {yl} to acoustic observations {xt}.
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2.1. Connectionist Temporal Classification Networks
The CTC Network is a recurrent neural network (RNN) [4], where it
differs from a typical RNN is in its outputs and the objective function
used during training. In a typical RNN, one label y is generated per
frame of input x. The CTC approach to solving the sequence to se-
quence classification where the input sequence length T is not equal
to the output sequence length L is as follows. Multiple T lengthed
sequences of outputs are mapped to identical L lengthed sequences.
This mapping is performed by removing all repeated labels. In this
way, sequences AAAB and AABB are both mapped to the sequence
AB. However, this would make it impossible to generate sequences
that do, in fact, contain repeated labels. To address this issue, an an
additional “blank” output label is included the vocabulary V . The
CTC mapping function, B, both eliminates blanks, and all repeated
labels. The CTC objective function introduces a path variable π

p(π|X) =

T∏
t=1

htπt
, ∀π ∈ V T

, where htk is the probability of observing the label k at time t, as
generated from a softmax output layer. To generate a likelihood of a
given label sequence l, all π’s that map to the same label sequence
Y are marginalized out,

p(l|X) =
∑

π∈B−1(l)

p(π|X).

This marginalization is calculated via dynamic programming similar
to the HMM forward-backward algorithm over a trellis of outputs.
Moreover, the gradient of this likelihood function can be efficiently
calculated and used to train the RNN via back-propagation through
time. In this work, we use the Eesen toolkit to [5] to train CTC net-
works and generate posteriors, and IBM Attila Speech Recognition
Toolkit [8, 13] to decode. The RNN has 4 bidirectional layers, with
200x2 LSTM units and is trained with sgd with momentum.

2.2. RNN Encoder-Decoder with Attention
RNNs have been used to solve sequence to sequence classification
problems including machine translation [14] and syntactic parsing
[15]. The typical approach used is to use one network to encode
the input sequence into a fixed dimensional representation e, and a
second recurrent network to decode e into an output sequence Y . If
either sequence contains a complicated structure, it can be challeng-
ing for the network to encode all of this information into a single,
fixed sized, vector. The idea of “attention” is to allow the decoder to
have access to the full sequence generated by the encoder, and a third
attention decision process is used to weight the encoded observation
for at each decoder step. The attention process is itself a recurrent
network. In this way, the attention decoder simultaneously is deter-
mining what part of the input is most important to generate an output
label, and what that label should be. The attention encoder-decoder
has been used for speech recognition in previous work [2, 3]. Our
approach follows an implementation1 described in [16, 2].

Specifically,
yi = Decoder(si−1, gi)

si = Recurrency(si−1, gi, yi)

gi =

L∑
j=1

αijej

1https://github.com/rizar/attention-lvcsr

αij = exp(hij)/

L∑
j=1

exp(hij)

hij = Score(si−1, ej)

where ej are the outputs of the encoder bidirectional RNN. From
bottom to top, Score(si−1, ej) is a MLP function assigning the raw
attention scores hij . A softmax function converts these to attention
weights, αi. These are used to weight the encoded features resulting
in gi, which are then used as input to Recurrency a unidirectional
RNN responsible for generating the output sequence elements yi via
Decoder, a readout function of the previous recurrent state si−1 and
current attended encoding gi.

The encoder is a 4 layer Bidirectional GRU RNN of 320x2 hid-
den units. The two deepest layers concatenate adjacent frames. The
decoder is a unidirectional GRU RNN also with 320 hidden units.
Training uses adadelta and momentum for training with gradient
clipping at 10.0. The training schedule comprises 1 pretraining it-
eration, 10 main iterations, and two annealing phases of 3 iterations
each with reduced initial learning rates.

2.3. Comparing end-to-end approaches

Critical to any sequence to sequence classification problem is how
to handle the alignment from input to output sequence. Traditional
speech recognition takes an iterative approach to this problem. In a
“flat-start” system, initial (naive) alignment hypotheses are used to
train a seed acoustic model which performs frame-level classifica-
tion of each acoustic frame to an output label, this model is then use
to re-align the training data, and another acoustic model is trained
with this newly aligned data. This process is repeated, in many
cases, using more and more sophisticated acoustic models. This
can be viewed (without statistical formalism) like a majorization-
minimization algorithm where a latent alignment variable λ is intro-
duced. Frame-level performance (accuracy or model likelihood) is
optimized given a fixed λ, then the improved frame-level model is
used to update λ.

Both of end-to-end approaches can also be interpreted as intro-
ducing an alignment variable and solving the alignment problem ex-
plicitly during training.

CTC introduces an alignment variable, by way of the path vari-
able π, and then marginalizes across all paths.. Dynamic program-
ming provides an efficient approach to calculating an exponential
number of alignments and marginalizing over their probability.

Training attention and decoder components allows the RNN ob-
jective function to solve the alignment and labeling problems simul-
taneously. Each output yi is a the results of a function of the input se-
quence X , and the previous output yi−1 using an intermediate func-
tion that (in effect) localizes the important subsequence X ′ ⊂ X
and weights its contribution. The alignment variable in this case is
the attention weights mapping each output symbol yi to X ′i .

There are differences in the acoustic models used each system
mapping acoustic observations to an output labels (grapheme, CD
state, etc.). In particular, the CTC addition of the blank symbol leads
to very different hypotheses. However, a major difference between
these is in how they address the alignment problem.

3. MATERIAL AND EVALUATION
This work was performed as part of the IARPA BABEL Program.
This program is focused on keyword search and speech recogni-
tion on low-resource languages. The investigated languages and lan-
guage pack identifiers are described in Table 1. For each language,
training and development set partitions are defined by the language
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pack distribution. Training sets are approximately 40 hours, with
15 hour development sets. For all experiments the input acoustic
features are multi-lingual features trained on 24 BABEL languages
(ML24). These features are trained via multi-task training in a two
stage DNN as described in [17].

Language ID Language Pack ID
Pashto 104 IARPA-babel104b-v0.4bY

Guarani 305 IARPA-babel305b-v1.0c
Igbo 306 IARPA-babel306b-v2.0c

Amharic 307 IARPA-babel307b-v1.0b
Mongolian 401 IARPA-babel401b-v2.0b
Javanese 402 IARPA-babel402b-v1.0b
Dholuo 403 IARPA-babel403b-v1.0b

Georgian 404 IARPA-babel404b-v1.0a

Table 1. Investigated Languages and Identifiers

Within this program and corresponding evaluation, keyword
search is a query detection task, with performance evaluated using
Term-Weighted Value (TWV) [18]. TWV is defined as:

TWV (θ) = 1− [PMiss(θ) + β · PFA(θ)]

where β = 999.9, PMiss is the miss rate averaged across all key-
words, and PFA is the average false alarm rate. The denominator of
PFA is defined for each keyword as T − Ntrue(kw), where T the
amount of evaluation speech and Ntrue is the number of true hits.

Maximum Term Weighted Value (MTWV) is defined as the
TWV obtained from optimal setting of a decision threshold, θ. In
this work, we report MTWV so as to disentangle hypothesis ranking
from the threshold identification problem.

4. ASR PERFORMANCE

We first report the 1-best WER performance of each system on the
corresponding development set for each language in Table 2. For
all languages other than Georgian (404) evaluation was performed
on manually segmented utterances with silent regions ignored. For
Georgian, automatically segmented utterances were used. Moreover,
when decoding 404, additional material collected from the web [19]
was used for language modeling. We compare these with a HMM-
DNN [8] trained with hessian free sequence training [20].

Language ID HMM-DNN CTC Attn
Pashto 104 52.7 52.8 55.5

Guarani 305 50.5 51.7 53.8
Igbo 306 61.4 64.2 62.1

Amharic 307 46.5 51.7 52.6
Mongolian 401 56.8 59.8 62.6
Javanese 402 57.3 58.3 64.6
Dholuo 403 41.6 44.2 48.2

Georgian 404 41.8 49.1 57.8

Table 2. 1-best WER using CTC, Attention, and HMM-DNN

In general, we find that CTC performs slightly worse than the
HMM-DNN trained with cross-entropy, and slightly worse than one
trained with sequence training. The Attention results are typically
worse than CTC or either hybrid system, though these systems were
more coarsely tuned for optimal language model weights at decod-
ing. This was an impact of Attention decoding being more computa-
tionally intensive. Even with this caveat, the discrepancy between

the HMM-DNN system and the Attention approach on Georgian
(404) is surprisingly high. Georgian is a highly agglutinative lan-
guage – one hypothesis is that this created more problems for the
Attention decoder than other languages did.

5. USING END-TO-END ASR FOR KWS

Following an approach described in [21], we perform keyword
search on lattices generated by the two end-to-end systems. The
general KWS approach is to generate lattices for all of the data to
be searched over. These lattices are used as the search index for all
queries made up of seen, in-vocabulary, terms. All queries contain-
ing out-of-vocabulary terms are searched for in a graphemic index.
Scores for each query are normalized via, sum-to-one normalization.

On Pashto (104), the CTC-generated lattices result in an MTWV
of 0.29, compared to a baseline of 0.38 from the HMM-DNN sys-
tem trained on the same input features. This is dramatically worse
considering that the two systems have almost identical WER per-
formance (CTC:52.8; DNN-HF: 52.7). Though not completely pre-
dictive, ASR performance has been a reasonable, if rough, proxy
for KWS performance. We are left with the question of why, given
the reasonably good (considering the amount of data and challenges
of the language), and comparable ASR performance, KWS perfor-
mance is so poor on lattices generated by end-to-end ASR.

High quality KWS, especially with highly errorful transcrip-
tion, requires a rich hypothesis space to identify lower confidence
hits. With WER scores between 40 and 60, a high-quality tran-
script is not sufficient for effective KWS, many hits receive low
confidence, but will remain above a KWS decision threshold. To
help explain this performance discrepancy we investigate the distri-
bution of graphemic posteriors of the three systems on Igbo (306).
The entropy of posteriors is used as a representation of how var-
ied hypothesis space each system is capable of delivering. The CTC
and Attention numbers are calculated over the graphemic vocabulary
(omitting the blank for CTC, while including the space character for
Attention) while the HMM-DNN calculation is over 6000 Context
Dependent phones. The CTC average entropy is 0.331, while At-
tention is 0.198. This is in comparison to an HMM-DNN average
entropy of 0.678. While the one best ASR performance of the end-
to-end systems is competitive with the HMM-DNN, the hypothesis
space is very sparse with “peaky” (i.e. low entropy) posteriors re-
sulting in thin lattices.

6. END-TO-END SYSTEMS AS FEATURE EXTRACTORS

ASR results (cf. Table 2) suggest that the end-to-end systems are
able to learn effective mappings from input features to graphemes.
In this section, we investigate whether these mappings more infor-
mative than the original features. To do this, we investigate the use
of end-to-end systems as feature extractors.

For the CTC system, we train a new version with a final hidden
layer that has 50 bidirectional units (100 total), and extract activa-
tions from this hidden, encoder layer. We use these encoded features
to train an HMM-DNN system, Hybrid-CTC, on the development
languages (all but 404-Georgian). These results would be able to
tell us if the CTC encodings, based on ML24 features, are any more
effective than the originals (with results reported in Table 2). This
system is trained with the IBM Attila Speech Recognition Toolkit.
Results can be found in Table 3.

The Hybrid-CTC systems yield much more competitive KWS
results than the pure CTC variant on 104 (0.34 vs. 0.29). Also,
the ASR performance is improved across all languages. However,
despite improved WER, the MTWV of the Hybrid-CTC is worse
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ID HMM-DNN Hyb-CTC
WER MTWV WER MTWV

104 52.7 0.3853 51.0 0.3447
305 50.5 0.5345 47.7 0.5171
306 61.4 0.3211 60.3 0.3103
307 46.5 0.5952 45.7 0.5604
401 56.8 0.4674 54.6 0.4212
402 57.3 0.4503 55.1 0.4209
403 41.6 0.6035 41.0 0.5705

Table 3. WER and MTWV using HMM-DNNs trained on ML24,
and CTC-encoded features

than that obtained from the HMM-DNN trained on original ML24
features. This suggests that the ”peakiness” may not only impact
posteriors, but aspects of the encoded features as well.

We then inspect the use of Attention models as a feature extrac-
tor. We perform this investigation on 306-Igbo, since it was the most
difficult language (highest WER and lowest MTWV). For the fea-
ture transformations, we use the activations from the bidirectional
encoder. These have 320 bidirectional units (640 total). However,
the Attention encoder subsamples the input frames twice resulting
in one encoded frame per four input frames. This is done to reduce
the computational complexity of the encoder, but it also tends to
generate improved performance. To reconstruct the original frame
size, adjacent frames are linearly interpolated. As before we use
IBM Attila to train a Hybrid-Attention system on 306. This results
in a WER of 59.6 and MTWV of 0.2967. This is somewhat consis-
tent with the Hybrid-CTC result, we see improvements to WER over
both the baseline features and the pure Attention system, but rather
poor MTWV even using the encoded features.

Inspecting the posterior entropy on Igbo (306) as in Section 5,
we find the Hybrid-CTC system has an average entropy of 0.581,
and the Hybrid-Attention system yields 0.340 in comparison to the
HMM-DNN value of 0.678. Here all numbers are computed over the
same 6,000 Context Dependent states. This suggests that the hybrid
model substantially smooths the model posteriors, modestly improv-
ing ASR performance, and resulting in improved KWS performance
compared to the original CTC system. While using the end-to-end
systems as feature encoders helps WER performance, MTWV re-
sults are still better with the original features. This is consistent with
the fact that posteriors generated by these systems are not as diverse
(high entropy) as those generated from the original HMM-DNN.

We then combine these encoded features with multilingual
acoustic features generated by RWTH Aachen [22] as input to a
DNN trained with hessian-free sequence training. CTC+RWTH
systems are trained only for the most difficult languages, while At-
tention+RWTH systems were trained for all languages. This is a
system combination approach exploited by a number of sites during
the IARPA BABEL evaluation to leverage complementary feature
representations (e.g. [23]). In Table 4, we report ASR and KWS
performance of the resultant systems. Across all systems, we find
that the initial ML24 features to combine most effectively with the
RWTH features. While we find that the end-to-end transformations
result in improved WER in isolation (Table 3), these transformed
features do not combine better with additional features via early
fusion, nor do they improve MTWV performance.

7. CONCLUSION

End-to-end speech recognition systems have emerged as competi-
tive alternatives to traditional ASR approaches. They have signifi-

ID ML24+RWTH CTC+RWTH Attn+RWTH
WER MTWV WER MTWV WER MTWV

104 47.9 0.4088 49.3 0.3775 50.5 0.3528
305 46.6 0.5437 – – 46.8 0.5201
306 59.1 0.3369 59.1 0.3211 59.3 0.2984
307 42.2 0.6060 – – 44.3 0.5441
401 52.4 0.4860 52.1 0.4724 53.7 0.4436
402 53.7 0.4708 53.6 0.4554 54.4 0.3974
403 39.6 0.6030 – – 40.3 0.5761
404 40.8 0.6979 40.6 0.6889 43.9 0.6541

Table 4. WER and MTWV using CTC, Attention, and baseline
ML24 features in combination with RWTH features

cant advantages in terms of simplicity of training and the ability to
incorporate more sophisticated sequence models. In this work we
evaluate the utility of CTC and RNN Encoder-Decoders with Atten-
tion, two end-to-end systems, for recognition of speech from low-
resource languages with limited available training data. This paper
represents the first results using “end-to-end” techniques for speech
recognition and keyword search on low-resource languages. We find
that they are able to generate competitive results, though fail to sur-
pass the WER obtained by a more traditional HMM-DNN approach.

We also investigate the use of these approaches for keyword
search. We find their use to be limited in this regard. Both systems
generate posteriors that are very low-entropy, resulting in a limited
hypothesis space for KWS. We explored two approaches to improve
their performance both using the end-to-end systems as feature en-
coders, building HMM-DNN systems using their encoders as input.
This results in improved performance to KWS in both cases, but
again fails to surpass the HMM-DNN baseline. Finally we inves-
tigate their use in system combination, to determine if the feature
encoding is more or less complementary with an externally con-
structed feature representation. We find that in combination, end-to-
end transformed features to perform worse than the original features.

These results point to a few directions to improve end-to-end
systems for ASR and KWS. First, the encoder in both CTC and At-
tention models can be enhanced. The possibilities here are vast; most
improvements to DNN acoustic modeling can be applied to end-to-
end encoders (e.g. CTC criteria applied to CNN acoustic models
[24]). The end-to-end decoders may need more specific modifica-
tion to generate a more diverse hypothesis space for effective KWS.
More aggressive regularization may be useful here, as would direct
incorporation of a language model and other side information to pro-
mote maintenance of alternate hypotheses.
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