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ABSTRACT
Recent advances in distant-talking ASR research have confirmed
that speech enhancement is an essential technique for improving the
ASR performance, especially in the multichannel scenario. How-
ever, speech enhancement inevitably distorts speech signals, which
can cause significant degradation when enhanced signals are used
as training data. Thus, distant-talking ASR systems often resort to
using the original noisy signals as training data and the enhanced
signals only at test time, and give up on taking advantage of en-
hancement techniques in the training stage. This paper proposes
to make use of enhanced features in the student-teacher learning
paradigm. The enhanced features are used as input to a teacher net-
work to obtain soft targets, while a student network tries to mimic
the teacher network’s outputs using the original noisy features as
input, so that speech enhancement is implicitly performed within
the student network. Compared with conventional student-teacher
learning, which uses a better network as teacher, the proposed self-
supervised method uses better (enhanced) inputs to a teacher. This
setup matches the above scenario of making use of enhanced features
in network training. Experiments with the CHiME-4 challenge real
dataset show significant ASR improvements with an error reduction
rate of 12% in the single-channel track and 15% in the 2-channel
track, respectively, by using 6-channel beamformed features for the
teacher model.

Index Terms— Distant-talking ASR, speech enhancement, stu-
dent teacher learning, self-supervised learning, CHiME-4

1. INTRODUCTION

Speech enhancement and ASR techniques have been developing
rapidly with the growing demand for distant-talking speech inter-
faces and recent challenge activities [1, 2, 3, 4]. In particular, when
using multichannel speech enhancement techniques such as beam-
forming [5], significant improvements can be obtained compared to
a single-channel ASR systems, and the state-of-the-art multichannel
systems are approaching the performance of ASR systems in clean
conditions [6, 7]. The enhancement component can greatly suppress
the noise components, and is responsible for the largest share of the
improvements in the above systems.

However, these studies also reveal an interesting phenomenon:
the use of enhanced signals as training data tends to degrade the ASR
performance despite the fact that this could mitigate a mismatch be-
tween training data (noisy speech) and test data (enhanced speech).
This likely comes from the sporadic distortions that speech enhance-
ment inevitably adds, which may introduce additional within-class
variability that is difficult to model robustly without overfitting.
Therefore, finding a way to take advantage of speech enhancement
in an acoustic model’s training phase is an interesting and potentially
fruitful research direction.

In this paper, instead of simply using enhanced speech as train-
ing data in the network training, we take advantage of the more

reliable accuracy displayed by acoustic models when enhanced
speech is used as test data. That is, we use a student-teacher learning
paradigm [8, 9] where we train the student network using noisy
training data as input and the soft targets obtained from the teacher
state posteriors computed on the enhanced speech data, instead of
the conventional hard targets, as shown in Fig. 1. Conventional
student-teacher learning is designed to train a so-called student
model typically consisting of a small-complexity network, in order
to obtain performance close to that of a so-called teacher model
consisting of a large-complexity network (or sometimes even an
ensemble thereof). The small student model tries to mimic the
teacher performance by using the soft targets obtained with the
teacher model, which corresponds to obtaining a compressed model
with similar performance to the large teacher model [10]. Relatedly,
[11] also points out the importance of using soft targets rather than
hard targets for deep learning, referring to such soft assignment
information as “dark knowledge.” Compared with these conven-
tional student-teacher learning methods, the proposed method does
not aim to compress the model, but aims for the student model to
mimic the teacher model as if the student network also performed
speech enhancement. Therefore, unlike the conventional methods,
the student and teacher models use different data as input, namely
the noisy data and the corresponding enhanced data, respectively.
The proposed method becomes especially attractive when we use
multichannel speech enhancement in the teacher model. Indeed, the
student model then tries to mimic the effects of multichannel speech
enhancement even though it only uses single channel inputs.

This method recalls the traditional noise robustness technique
of single-pass retraining [12], in which the state alignment obtained
from a close-talking microphone signal is used to train an acous-
tic model for a distant-talking microphone in a stereo recording. In
[13], simulation was used to obtain the clean and noisy stereo data
in a student-teacher retraining framework that used soft posteriors
instead of hard alignments. Like [13], the proposed method uses
soft posteriors, however it differs from both [12] and [13] in that it
does not require the availability of noisy/clean parallel data, and in-
stead uses multichannel enhancement instead of clean input for the
teacher model, which can be easily obtained. It can thus apply to re-
alistic situations where we cannot obtain the reference clean speech
features.

The use of a teacher model based on more accurate sensor infor-
mation is also known as self-supervised learning [14, 15]. For exam-
ple, in [15], a multi-camera teacher model was used to infer soft la-
bels of depth-based categories, in order to supervise a single-camera
student model. This allowed learning of distant depth estimation
without parallel data, despite gaps in the teacher’s depth inference.
Inspired by this work, in our proposed method, we expect that the
soft posteriors from the multichannel teacher’s acoustic model will
be relatively insensitive to the distortion anomalies in the enhanced
data, and provide reliable supervision for the single-channel student
model.
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Fig. 1. Conventional student-teacher learning (left side) and the proposed learning with enhanced signals (right side). The proposed student-
teacher learning uses enhanced feature onoisy

t to provide better soft targets pφ(st|oenh
t ).

This paper experimentally demonstrates the effectiveness of the
method by using the CHiME-4 speech separation and recognition
challenge dataset [16], in which 1-, 2-, and 6-channel tracks are pre-
pared by setting the subset of microphones that can be used in the
test stage, while all 6 channel data can be used in the training stage.
We use here a delay-and-sum beamformed signal (BeamformIt [17])
from 5-channel signals as enhanced signal, and perform the proposed
student-teacher learning. The obtained acoustic model improves the
performance of all 1-, 2-, and 6-channel tracks, and especially ob-
tains a large improvement on the 1-channel track.

2. FORMULATION

2.1. Conventional student-teacher learning

Let O = {ot ∈ RD|t = 1, . . . , T} be a set of D dimensional input
feature vectors and Sref = {sref

t ∈ {1, . . . ,K}|t = 1, . . . , T} be the
corresponding target labels, where T is the number of samples and
K is the number of distinct categories. The standard cross entropy
criterion is defined using the reference label distribution pref(st) and
an arbitrary posterior distribution pθ(st|ot) with model parameter θ
as follows:

CE(θ;O,Sref) ,
∑
t

CE[pref(st)‖pθ(st|ot)]

,
∑
t

∑
st

−δ(st, sref
t ) log pθ(st|ot)

= −
∑
t

log pθ(s
ref
t |ot). (1)

Here the reference label distribution is represented by a Kronecker
delta function, i.e., pref(st) = δ(st, s

ref
t ), which corresponds to the

hard assignment to the labels obtained by the Viterbi algorithm in
the acoustic model training case.

Instead of using the hard assignment labels, student-teacher
learning uses the label posterior distribution pφ(st|ot) obtained by
using a well-trained teacher network with parameter φ as follows:

CE(θ;O, φ) ,
∑
t

CE[pφ(st|ot)‖pθ(st|ot)]

, −
∑
t

∑
st

pφ(st|ot) log pθ(st|ot). (2)

Contrary to the previous Kronecker delta case, which is a very sparse
one-hot representation, there are many non-zero values in this dense
representation, which may lead to more useful supervision. Hinton
et al. [11] refer to this information as dark knowledge, and show that
this training criterion can be used to efficiently obtain a compressed
student network with comparable performance to the teacher model.
Note that Eq. (2) does not depend on the supervision Sref, although
it is used when training the teacher model pφ(st|ot).

2.2. Proposed student-teacher learning with enhanced signals

Although the main target of the conventional student-teacher learn-
ing is to use different network architectures between teacher and stu-
dent models, our proposed method is to use different input features:
a teacher model uses enhanced features Oenh = {oenh

t ∈ RD|t =
1, . . . , T} for predicting better posteriors, while a student model
uses original noisy speech features Onoisy = {onoisy

t ∈ RD|t =
1, . . . , T}.

The proposed teacher-student learning considers the following
objective function:

CE(θ;Oenh, Onoisy, φ)

,
∑
t

CE[pφ(st|oenh
t )‖pθ(st|onoisy

t )]

, −
∑
t

∑
st

pφ(st|oenh
t ) log pθ(st|onoisy

t ) (3)

The proposed objective function is similar to Eq. (2) except that we
use noisy/enhanced parallel data. We can alternately use speech fea-
tures obtained by clean or close-talking microphone signals in lieu
of Oenh, if available.

2.3. Multichannel extension

With multichannel signals, we can use powerful beamforming meth-
ods that exploit spatial information to enhance the speech signals.
Our student-teacher learning with enhanced signals can be ex-
tended to this particular setup, considering each channel separately
as a single-channel noisy signal used as input to the student net-
work. When we have J-channel speech features Onoisy = {onoisy

j,t ∈
RD|t = 1, . . . , T, j = 1, . . . , J} and the corresponding enhanced
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features Oenh, Eq. (3) is extended as:

CE(θ;Oenh,Onoisy, φ)

,
∑
t

∑
j

CE[pφ(st|oenh
t )‖pθ(st|onoisy

j,t )]

, −
∑
t

∑
j

∑
st

pφ(st|oenh
t ) log pθ(st|onoisy

j,t ). (4)

Compared with the single channel enhancement case in Eq. (3),
Eq. (4) has the same posterior target, but the student network now
needs to learn that target with any of the channels as input.

In our experiments, we have combined the standard cross en-
tropy in Eq. (2) and our proposed objective function in Eq. (4) with
a weight factor γ, as follows:

(1− γ)CE(θ;Onoisy, S) + γCE(θ;Oenh,Onoisy, φ). (5)

With γ approaching 0, the objective function becomes the standard
cross entropy, while with γ approaching 1, the training criterion only
considers the proposed student-teacher learning objective function.

3. EXPERIMENTS

This section shows the efficacy of the proposed method by using
the 1ch, 2ch, and 6ch tracks of the CHiME-4 speech separation and
recognition challenge [16].

3.1. Experimental setup

CHiME-4 revisits the datasets originally recorded for CHiME-3 [3],
i.e., Wall Street Journal (WSJ) corpus sentences spoken by talk-
ers situated in challenging noisy environments recorded using a 6-
channel tablet-based microphone array. The CHiME-4 data consist
of real and simulation data for each of the training, development,
and evaluation sets. There are three kinds of test data depending on
the number of microphones used (1, 2, and 6), which form the 1ch,
2ch, and 6ch tracks in the challenge. Training data does not have
such limitation, and we can use all 6 channel data to obtain acoustic
models.

We use the same experimental conditions as the official CHiME-
4 baseline [16] using Kaldi [18] with a 3-gram language model, ex-
cept that the DNN acoustic model is here trained by using the noisy
speech data for all 6 channel signals (i.e., 6 times more data than the
official baseline). We use fMLLR features where the transformation
matrices are obtained with the GMM acoustic model built on the
same 6 channel signals. The DNN has 7 layers and each layer has
2048 neurons with sigmoid activation functions between the linear
transformation layers. We also use the same hard targets for the stan-
dard CE training of both conventional and proposed methods. These
were obtained by using the Viterbi alignments of the noisy speech
data with the above GMM.

For the DNN training including the standard cross entropy and
proposed student-teacher learning, we used the Chainer deep net-
work toolkit [19]. DNNs were optimized by using the stochastic
gradient descent algorithm with a mini-batch size of 512, with the
learning rate initialized to 1.0 and halved when we observed a degra-
dation of the validation score. As multichannel speech enhancement
algorithm, we used a delay-and-sum beamformer based on Beam-
formIt [17]. At training time, the proposed student-teacher learning
used the enhanced training data obtained using 5 microphone array
signals (the 2nd channel was excluded following the baseline [16]),
and the obtained model was used for all 1ch, 2ch, and 6ch track

Table 1. WERs of the training data (closed condition) by using
Noisy, Clean∗, and Enhanced features. The clean data are obtained
by using the original WSJ data for the simulation part and the close-
talking microphone data for the real part.

WER (%)

Noisy 29.54

Clean∗ 28.87

Enhanced 28.05

evaluation. At test time, in the 2ch and 6ch conditions, we apply
the delay-and-sum beamformer to the noisy signal, and use the en-
hanced signal as input to the network. In the 1ch condition, the noisy
signal is used as is. In the experiments, we used the same network
architecture (i.e., 7-layer DNN) for both student and teacher models
so that we simply evaluate the effectiveness of the proposed learning
with enhanced features.

3.2. Quality of soft targets

Before moving to the student-teacher learning experiments, we an-
alyzed the qualities of the soft targets obtained by using the noisy,
clean (original WSJ data for the simulation part and close-talking
microphone data for the real part), and enhanced features. Table
1 shows the WERs of the training sets with these three features.
The multi-condition acoustic model was obtained by using the stan-
dard CE training with noisy speech features. This result shows
that the soft targets obtained with enhanced features seem to act
as better ground truths compared with those with noisy features.
We also found that the result with clean features is not better than
that with enhanced features, probably due to the large mismatch be-
tween the clean speech data and the multi-condition acoustic model
trained with noisy speech features. Also, features obtained from
close-talking microphones have their own specific distortions due
to lip noises and channel distortions. Overall, it is very difficult to
prepare ideal parallel data of clean and noisy speech features un-
less we fully use simulation data like [13], which is a less realistic
scenario. This result motivated us to use enhanced features for soft
targets rather than clean speech features.

3.3. Effect of soft targets

The second experiment investigates the performance of the soft tar-
gets without using enhanced features. We only report the results on
the real development and evaluation sets, as these are more realis-
tic tasks. We use the teacher state posterior obtained by using noisy
speech features, and the student model is also trained by using the
same noisy speech features. That is, we use the following objective
function:

(1− γ)CE(θ;Onoisy, S) + γCE(θ;Onoisy, φ), (6)

where the second term CE(θ;Onoisy, φ) is obtained by substituting
Onoisy into O in the conventional student-teacher learning equation
(2). Figures 2 and 3 show the WERs of the 1, 2, and 6 channel tracks
for the development and evaluation sets, respectively, depending on
the weight factor γ in Eq. (6), where γ = 0 corresponds to the con-
ventional CE. For all experiments, simply using the soft target im-
proved the performance. It is expected that the Viterbi alignments
for noisy speech data are prone to including misalignments, which
is mitigated by the soft target training.
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Fig. 2. Student-teacher learning with noisy speech for CHiME-4
development sets (1, 2, and 6 channel tracks).

Fig. 3. Student-teacher learning with noisy speech for CHiME-4
evaluation set (1, 2, and 6 channel tracks).

Table 2. Summary of the WERs for standard CE with hard tar-
gets (Baseline), student-teacher learning with noisy speech fea-
tures (Noisy), and proposed student-teacher learning with enhanced
speech features (Proposed).

6ch 2ch 1ch

Method Dev Eval Dev Eval Dev Eval

Baseline 8.70 14.63 11.05 18.57 14.33 23.09

Noisy 8.21 14.17 10.64 17.75 13.55 22.19

Proposed 8.03 13.19 10.09 15.83 12.54 20.25

3.4. Student-teacher learning with enhanced features

The third experiment evaluates the proposed student-teacher learn-
ing with enhanced features. As shown in Fig. 4 for the develop-
ment set and Fig. 5 for the evaluation set, the proposed method sig-
nificantly improves the performance upon the standard CE training
(γ = 0), and also upon the previous results simply using soft tar-
gets for training (Figs. 2 and 3). The improvements are especially
large in the 1ch condition, where the signal is noisy, and the 2ch
condition, where the enhanced signal did not benefit as much from
beamforming as in the 6ch case. The student network is able to deal
better with the remaining noise in the input than the networks that are

Fig. 4. Proposed student-teacher learning with enhanced speech for
CHiME-4 development set (1, 2, and 6 channel tracks).

Fig. 5. Proposed student-teacher learning with enhanced speech for
CHiME-4 evaluation set (1, 2, and 6 channel tracks).

trained without taking advantage of the soft targets obtained from the
enhanced features. We also found that the weight factor γ was not
so sensitive when we used a value around 1.0.

Table 2 summarizes the WERs for the standard CE with hard
targets (Baseline), student-teacher learning with noisy speech fea-
tures (Noisy) from Figures 2 and 3, and proposed student-teacher
learning with enhanced speech features (Proposed) from Figures 4
and 5. The proposed method improved the performance in all cases,
and achieved around 10% error reduction rates for all cases, which
shows its effectiveness.

4. SUMMARY

This paper proposes a new student-teacher learning scheme for noise
robust ASR, where the teacher model uses enhanced features while
the student model uses noisy features during training. This encour-
ages the student model to try to perform speech enhancement within
the network. The experiments on the CHiME-4 speech separation
and recognition challenge show significant improvement when us-
ing the proposed method, especially in the single-channel track.

Future work will consider extending the proposed method to
handle sequence discriminative training and state sequence poste-
riors, as well as using state-of-the-art beamforming with mask esti-
mation [20, 21, 22].
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