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ABSTRACT

Conventional deep neural networks (DNN) for speech acoustic mod-
eling rely on Gaussian mixture models (GMM) and hidden Markov
model (HMM) to obtain binary class labels as the targets for DNN
training. Subword classes in speech recognition systems corre-
spond to context-dependent tied states or senones. The present work
addresses some limitations of GMM-HMM senone alignments for
DNN training. We hypothesize that the senone probabilities obtained
from a DNN trained with binary labels can provide more accurate
targets to learn better acoustic models. However, DNN outputs bear
inaccuracies which are exhibited as high dimensional unstructured
noise, whereas the informative components are structured and low-
dimensional. We exploit principal component analysis (PCA) and
sparse coding to characterize the senone subspaces. Enhanced prob-
abilities obtained from low-rank and sparse reconstructions are used
as soft-targets for DNN acoustic modeling, that also enables train-
ing with untranscribed data. Experiments conducted on AMI corpus
shows 4.6% relative reduction in word error rate.

Index Terms— Soft targets, Principle component analysis,
Sparse coding, Automatic speech recognition, Untranscribed data.

1. INTRODUCTION
DNN based acoustic models have been state-of-the-art for auto-
matic speech recognition over the past few years [1]. While DNN
input consists of multiple frames of acoustic features, the target
output is obtained from a frame level GMM-HMM forced align-
ment corresponding to the context dependent tied triphone states or
senones [2]. This procedure results in inefficiency in DNN acoustic
modeling [3, 4]. Unlike the conventional practice, the present work
argues that the optimal DNN targets are probability distributions
rather than Kronecker deltas (hard targets). Earlier studies on op-
timal training of a neural network for HMM decoding provides rig-
orous theoretical analysis that supports this idea [5]. Here, we pro-
pose a DNN based data driven framework to obtain accurate proba-
bility distributions (soft targets) for improved DNN acoustic model-
ing. The proposed approach relies on modeling of low-dimensional
senone subspaces in DNN posterior probabilities.

Speech production is known as the result of activations of a
few highly constrained articulatory mechanisms leading to genera-
tion of linguistic units (e.g. phones, senones) on low-dimensional
non-linear manifolds [6, 7]. In the context of DNN acoustic
modeling, low-dimensional structures are exhibited in the space
of DNN senone posteriors [8]. Low-rank and sparse represen-
tations are found promising to characterize senone-specific sub-
spaces [9, 10]. The senone-specific structures are superimposed with
high-dimensional unstructured noise. Hence, projection of DNN
posteriors on their underlying low-dimensional subspaces enhances
the DNN posterior accuracies. In this work, we propose a new appli-
cation of enhanced DNN posteriors to generate accurate soft targets

for DNN acoustic modeling.
Earlier works on exploiting low-dimensionality in DNN acous-

tic modeling focus on exploiting low-rank and sparse representations
to modify DNN architectures for small footprint implementation.
In [11, 12] low-rank decomposition of the neural network’s weight
matrices enables reduction in DNN complexity and memory foot-
print. Similar goals have been achieved by exploiting sparse con-
nections [13] and sparse activations [14] in hidden layers of DNN.
In another line of research, soft targets based DNN training has
been found effective for enabling model compression [15, 16] and
knowledge transfer from an accurate complex model to a smaller
network [17, 18]. This approach relies on soft targets providing more
information for DNN training than the binary hard alignments.

We propose to bring together the advantage of higher infor-
mation content of soft targets with the accurate model of senone
space provided by low-rank and sparse representations to train su-
perior DNN acoustic models. Soft targets enable characterization
of the senone-specific subspaces by quantifying the correlations be-
tween senone classes as well as sequential dependencies (details in
Section 2.1). This information is manifested in the form of struc-
tures visible among a large population of training data posterior
probabilities. Potential of these posteriors to be used as soft tar-
gets for DNN training is reduced due to presence of unstructured
noise. Therefore, to obtain reliable soft targets, we perform low-
rank and sparse reconstruction of training data posteriors to preserve
the global low-dimensional structures while discarding the random
high-dimensional noise. The new DNNs trained with low-rank or
sparse soft targets are capable of estimating the test posteriors on
a low-dimensional space which results in better ASR performance.
We consider PCA (Section 2.2) and dictionary based sparse cod-
ing (Section 2.3) for generating low-rank and sparse representations
respectively. Strength of PCA lies in capturing the linear regular-
ities in the data [19] whereas an over-complete dictionary used for
sparse coding learns to model the non-linear space as a union of low-
dimensional subspaces. Dictionary based sparse reconstruction also
reduces the rank of the senone posterior space [9].

Experimental evaluations are conducted on AMI corpus [20], a
collection of recordings of multi-party meetings for large vocabulary
speech recognition. We show in Section 3 that low-rank and sparse
soft targets lead to training of better DNN acoustic models. Reduc-
tions in word error rate (WER) are observed over the baseline hy-
brid DNN-HMM system without the need of explicit sparse coding
or low-rank reconstruction of test data posteriors. Moreover, they
enable effective use of out-of-domain untranscribed data by aug-
menting AMI training data in a knowledge transfer fashion. DNNs
trained with low-rank and sparse soft targets yield upto 4.6% relative
improvement in WER, whereas a DNN trained with non-enhanced
soft targets fails to exploit any further knowledge provided by the
untranscribed data. To the best of our knowledge, significant bene-
fit of DNN generated soft targets for training a more accurate DNN
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Fig. 1: Correlation among senones due to: (a) long input context and (b) acoustically similar root in decision trees. In (c), we show examples of DNN
posterior probabilities for a particular senone class (in blue barplots) which highlight low-dimensional patterns (green boxes) super-imposed with unstructured
noise. PCA and sparse coding enable recovery of the underlying patterns by discarding the unstructured noise, and provide more reliable soft targets for DNN
training. K denotes the size of DNN outputs which is equal to total number of senones.

acoustic model has not been shown in the prior work.
In the rest of the paper, the proposed approach is described in

Section 2. Experimental analysis is carried out in Section 3. Section
4 presents the concluding remarks and directions for future work.

2. LOW-RANK AND SPARSE SOFT TARGETS
This section describes the novel approach towards reliable soft target
estimation. We study reasons for regularities among senone posteri-
ors and investigate two systematic approaches to obtain more accu-
rate probabilities as soft targets for DNN acoustic modeling.

2.1. Towards Better Targets for DNN Training
Earlier works on distillation of the DNN knowledge show the po-
tential of soft targets for model compression and the sub-optimal
nature of the hard alignments [15, 21]. Although hard targets as-
sign a particular senone label to a relatively long sequence of (∼10
or more) acoustic frames, senone durations are usually shorter. A
long context of input frames may lead to presence of acoustic fea-
tures corresponding to multiple senones in the input (Fig. 1(a)), so
the assumption of binary outputs renders inaccurate.

In contrast, soft outputs quantify such sequential information
using non-zero probabilities for multiple senone classes. Contex-
tual senone dependencies arising in soft targets can be attributed to
the ambiguities due to phonetic transitions [21]. Furthermore, the
procedure of senone extraction leads to acoustic correlations among
multiple classes corresponding to the same phone-HMM states [2],
as they all share the same root in the decision tree (Fig. 1(b)).

These dependencies can be characterized by analyzing a large
number of senone probabilities from the training data. The frequent
dependencies are exhibited as regularities among the correlated di-
mensions in senone posteriors. As a result, a matrix formed by con-
catenation of class-specific senone posteriors has a low-rank struc-
ture. In other words, class-specific senones lie in low-dimensional
subspaces with a dimension higher than unity [9], that violates the
principal assumption of binary hard targets.

In practice, inaccuracies in DNN training lead to the presence of
unstructured high-dimensional errors (Fig. 1(c)). Therefore, the ini-
tial senone posterior probabilities obtained from the forward pass of
a DNN trained with hard alignments are not accurate in quantifying
the senone dependency structures. Our previous work demonstrates
that the erroneous estimations can be separated using low-rank or
sparse representations [10, 9]. In the present study, we consider
application of PCA and sparse coding to obtain more reliable soft
targets for DNN acoustic model training.

2.2. Low-rank Reconstruction Using Eigenposteriors
Let zt = [p(s1|xt) . . . p(sk|xt) . . . p(sK |xt)]> denote a forward
pass estimate of the posterior probabilities of K senone classes
{sk}Kk=1, given the acoustic feature xt at time t. DNN is trained us-
ing the initial labels obtained from GMM-HMM forced alignment.
We collect N senone posteriors which are labeled as class sk in
GMM-HMM forced alignment and mean-center them in the loga-
rithmic domain as follows:

z̃t = ln(zt)− µsk (1)
where µsk is mean of the collected posteriors in log-domain. Due to
skewed distribution of the posterior vectors, the logarithm of poste-
riors fits better the Gaussian assumption of PCA. We concatenate the
N senone sk posterior vectors after operation shown in (1) to form
a matrix Msk ∈ R

K×N . For the sake of brevity, the subscript sk is
dropped in the subsequent expressions. However, all the calculations
are performed for each of the senone classes individually.

Principal components of the senone space are obtained via
eigenvector decomposition [22] of covariance matrix of M . The
covariance matrix is obtained as C = 1

N−1
MM>. We factorize the

covariance matrix as C = PSP> where P ∈ RK×K identifies the
eigenvectors and S is a diagonal matrix containing the sorted eigen-
values. Eigenvectors in P which correspond to the large eigenval-
ues in S constitute the frequent regularities in the subspace, whereas
others carry the high-dimensional unstructured noise. Hence, the
low-rank projection matrix is defined as

DLR = Pl ∈ RK×l (2)
where Pl is truncation of P that keeps only the first l eigenvectors
and discards the erroneous variability captured by other K − l com-
ponents. We select l such that relatively σ% variability is preserved
in the low-rank reconstruction of original senone matrix M .

The eigenvectors stored in the low-rank projection Pl are re-
ferred to as “eigenposteriors” of the senone space (in the same spirit
as eigenfaces are defined for low-dimensional modeling of human
faces [23]).

Low-rank reconstruction of a mean-centered log posterior z̃t,
denoted by z̃LR

t is estimated as
z̃LR
t = DLRDLR

>z̃t (3)

Finally, we add the mean µsk to z̃LR
t and take its exponent to

obtain a low-rank senone posterior zLRt for the acoustic frame xt.
Low-rank posteriors obtained for the training data are used as soft
targets for learning better DNNs (Fig.2). We assume that σ% vari-
ability, that quantifies the low-rank regularities in senone spaces, is
a parameter independent of the senone class.
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Fig. 2: Low-dimensional reconstruction of senone posterior probabilities to achieve more accurate soft targets for DNN acoustic model training: PCA is used
to extract principal components of the linear subspaces of individual senone classes. Sparse reconstruction over a dictionary of senone space representatives is
used for non-linear recovery of low-dimensional structures.

2.3. Sparse Reconstruction Using Dictionary Learning
Unlike PCA, over-complete dictionary learning and sparse coding
enables modeling of non-linear low-dimensional manifolds. Sparse
modelling assumes that senone posteriors can be generated as sparse
linear combination of senone space representatives, collected in a
dictionary DSP. We use online dictionary learning algorithm [24] to
learn an over-complete dictionary for senone sk using a collection
of N training data posteriors of senone sk, such that

DSP = arg min
D,A

tN∑
t=t1

‖zt −Dαt‖22 + λ‖αt‖1 (4)

where A = [αt1 . . . αtN ] and λ is a regularization factor. Again we
have dropped the subscript sk, but all calculations are still senone-
specific. Sparse reconstruction (Fig.2) of senone posteriors is thus
obtained by first estimating the sparse representation [25] as

αt = arg min
α
‖zt −DSP α‖22 + λ‖α‖1. (5)

followed by reconstruction as
zSPt = DSP αt ∀t ∈ {t1, . . . , tN}. (6)

Sparse reconstructed senone posteriors have been previously
found to be more accurate acoustic models for DNN-HMM speech
recognition [9]. In particular, it was shown that the rank of senone-
specific matrices is much lower after sparse reconstruction. In the
present work, we investigate if they could also provide more accurate
soft targets for DNN training Regularization parameter λ in (4)-(5)
controls the level of sparsity and the level of noise being removed af-
ter sparse reconstruction. Fig. 2 summarises the low-rank and sparse
reconstruction of senone posteriors.

3. EXPERIMENTAL ANALYSIS
In this section we evaluate the effectiveness of low-rank and sparse
soft targets to improve the performance of DNN-HMM speech
recognition. We also investigate the importance of better DNN
acoustic models to exploit information from untranscribed data.

3.1. Database and Speech Features
Experiments are conducted on AMI corpus [20] which contains
recordings of spontaneous conversations in meeting scenarios. We
use recordings from individual head microphones (IHM) comprising
of around 67 hours of train set, 9 hours of development, (dev) set,
and 7 hours test set. 10% of training data is used for cross-validation
during DNN training, whereas dev set is used for tuning regular-
ization parameters σ and λ. For experiments using untranscribed
additional training data, we use ICSI meeting corpus [26] and Lib-
rispeech corpus [27]. Data from ICSI corpus consists of meeting
recordings (around 70 hours). Librispeech data is read speech from
audio-books and we use a 100 hour subset of it.

Kaldi toolkit [28] is used for training DNN-HMM systems. All
DNNs have 9 frames of temporal context at acoustic input and 4
hidden layers with 1200 neurons each. Input features are 39 dimen-
sional MFCC+∆+∆∆ (39×9=351 dimensional input) and output
is 4007 dimensional senone probability vector. AMI pronunciation
dictionary has ∼23K words and a bigram model for decoding. For
dictionary learning and sprase coding, SPAMS toolbox [29] is used.

3.2. Baseline DNN-HMM using Hard and Soft Targets
Our baseline is a hybrid DNN-HMM system trained using forced
aligned targets (IHM setup in [30]). WER using baseline DNN is
32.4% on AMI test set. Another baseline is a DNN trained using
non-enhanced soft targets from the baseline. This system gives a
WER of 32.0%. All soft-target based DNNs are randomly initialized
and trained using cross-entropy loss backpropagation.

3.3. Generation of Low-rank and Sparse Soft Targets
We group DNN forward pass senone probabilities for the training
data into class-specific senone matrices. For this, senone labels from
the ground truth based GMM-HMM hard alignments are used. Each
matrix is restricted to have N = 104 vectors of K = 4007 senone
probabilities to facilitate computation of principal components and
sparse dictionary learning. We found the average rank of senone
matrices, defined as the number of singular values required to pre-
serve 95% variability, to be 44. Dictionaries of size 500 columns
were learned for each senone, making them nearly 10 times over-
complete. The procedure as depicted in Fig. 2 is implemented to
generate low-rank and sparse soft-targets.

We also encountered memory issues while storing large matri-
ces of senone probabilities for all training and cross-validation data.
It requires enormous amounts of storage space (similar to [16]).
Hence, we preserve precision only upto first two decimal places in
soft targets, followed by normalizing the vector to sum 1 before stor-
ing on the disk. We assume that essential information might not be in
dimensions with very small probabilities. Although such threshold-
ing can be a compromise to our approach, we did some experiments
with higher precision (upto 5 decimal places), but there was no sig-
nificant improvement in ASR. Both low-rank and sparse reconstruc-
tion were still computed on full soft-targets without any rounding;
we perform thresholding only when storing targets on the disk.

First we tune the variability preserving low-rank reconstruction
parameter σ and sparsity regularizer λ for better ASR performance
in AMI dev set. When σ=80% of variability is preserved in the prin-
cipal components space, the most accurate soft targets are achieved
for DNN acoustic modeling resulting in the smallest WER. Like-
wise, λ = 0.1 was found the optimal value for sparse reconstruction.
It may be noted that in both low-rank and sparse reconstruction, there
is an optimal amount of enhancement needed for improving ASR.
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Table 1: Performance of various systems (in WER%) when additional untranscribed training data is used. System 0 is hard-targets based baseline DNN. In
paranthesis, SE-0 denotes supervised enhancement of DNN outputs from system 0 and FP-n shows forward pass using system n.

System # Training Data PCA(σ=80) Sparsity(λ=0.1) Non-Enhanced Soft-Targets
0 AMI (Baseline WER 32.4%) - - -
1 AMI(SE-0) 31.9 31.6 32.0
2 ICSI(FP-1) + AMI(SE-0) 31.2 31.6 32.5
3 LIB100(FP-1) + AMI(SE-0) 31.2 31.6 32.4
4 LIB100(FP-2) + AMI(SE-0) 31.0 31.8 32.4
5 LIB100(FP-2) + ICSI(FP-2) + AMI(SE-0) 30.9 31.7 32.4

While less enhancement leads to continued presence of noise in soft
targets, too much of it results in loss of essential information.

3.4. DNN-HMM Speech Recognition
Speech recognition using DNNs trained with the new soft targets
obtained from low-rank and sparse reconstruction is compared in
Table 1). System-0 is the baseline hard target based DNN. System-
1 is built by supervised enhancement of soft outputs obtained from
system-0 on AMI training data as shown in Fig. 2. As expected,
training with the soft targets yields lower WER than the baseline
hard targets. We can see that both PCA and sparse reconstruction re-
sult in more accurate acoustic modeling, where sparse reconstruction
achieves 0.8% absolute reduction in WER.

Sparse reconstruction is found to work better than low-rank re-
construction for ASR. It can be due to the higher accuracy of sparse
model in characterizing the non-linear senone subspaces [8]. Un-
like previous works [9, 10] which required two stages of DNN for-
ward pass and explicit low-dimensional projection, a single DNN
is learned here that estimates the probabilities directly on a low-
dimensional space.

3.5. Training with Untranscribed Data
Given an accurate DNN acoustic model and some untranscribed in-
put speech data, we can obtain soft targets for the new data through
forward pass. Assuming that the initial model can generalize well on
unseen data, the additional soft targets thus generated can be used to
augment our original training data. We propose to learn better DNN
acoustic models using this augmented training set. This method is
reminiscent of the knowledge transfer approach [15, 16] which is
typically used for model compression. In this work, we use the same
network architecture for all experiments.

DNNs trained with low-rank and sparse soft targets are used
to generate soft targets for ICSI corpus and Librispeech (LIB100)
which are sources of untranscribed data. Table 1 shows interest-
ing observations from various experiments using data augmentation.
First, system-2 is built augmenting enhanced AMI training data with
ICSI soft targets generated from system-1. We consider ICSI cor-
pus, consisting of spontaneous speech from meeting recordings, as
in-domain with AMI corpus. While PCA based DNN successfully
exploits information from this additional ICSI data showing signif-
icant improvement from system-1 to system-2, the same is not ob-
served using sparsity based DNN.

Next, system-3 is built by augmenting enhanced AMI data with
Librispeech(LIB100) soft targets obtained from system 1. Read au-
dio book speech data from Librispeech is out-of-domain as com-
pared to spontaneous speech in AMI. Still, system-3 achieves similar
reductions in WER as observed in system-2 which was built using
in-domain ICSI data.

System 4 and 5 were built to further explore if we could extract
even more information from the out-of-domain Librispeech data by
using soft targets from system-2 instead of system-1. Note that
system-2, trained using soft targets from both AMI and ICSI sponta-
neous speech data, is a more accurate model than system 1. Indeed,
both system 4 and 5 perform better than previous systems using PCA

based DNNs where system 5 outperforms the hard target based base-
line by 1.5% absolute reduction in WER.

Surprisingly, DNN soft targets obtained from sparse reconstruc-
tion are not able to exploit the unseen data in all the systems. We
speculate that dictionary learning for sparse coding captures the non-
linearities specific to AMI database. These nonlinear characteris-
tics may correspond to channel and recording conditions which vary
over different databases and can not be transcended. On the other
hand, the local linearity assumption of PCA leads to extraction of a
highly restricted basis set that captures the most important dynam-
ics in the senone probability space. Such regularities mainly address
the acoustic dependencies among senones which are generalizable to
other acoustic conditions. Hence, the eigenposteriors are invariant to
the exceptional effects due to channel and recording conditions.

Sparse reconstruction is able to mitigate the undesired effects as
long as they have been seen in the training data. Given the superior
performance of sparse reconstruction of AMI posteriors (in system-
1), we believe that sparse modeling might be more powerful if some
labeled data from unseen acoustic conditions is made available for
dictionary learning.

It may be noted that training with additional untranscribed data
is not effective if non-enhanced soft targets are used. In fact, systems
2-5 without low-rank or sparse reconstruction, perform worse than
system-1 although they have seen more training data.

4. CONCLUSIONS AND FUTURE DIRECTIONS
We presented a novel approach to improve DNN acoustic model
training using low-rank and sparse soft targets. PCA and sparse
coding were employed to identify senone subspaces, and enhance
senone probabilities through low-dimensional reconstruction. Low-
rank reconstruction using PCA relies on the existance of eigenpos-
teriors capturing the local dynamics of senone subspaces. Although,
sparse reconstruction proves more effective to achieve reliable soft
targets when transcribed data is provided, low-rank reconstruction
is found generalizable to out-of-domain untranscribed data. DNN
trained on low-rank reconstruction achieves 4.6% relative reduction
in WER, whereas DNN trained using non-enhanced soft targets fails
to exploit additional information from additional data. Eigenpos-
teriors can be better estimated using robust PCA [31] and sparse
PCA [32] for better modeling of senone subspaces. Furthermore,
probabilistic PCA and maximum likelihood eigen decomposition
can reduce the computational cost for large scale applications.

This study supports the use of probabilistic outputs for DNN
acoustic modeling. Specifically, enhanced soft targets can be more
effective in training small footprint DNNs based on model compres-
sion. In future, we plan to investigate their usage in cross-lingual
knowledge transfer [33]. We will also study domain adaptation
based on the notion of eigenposteriors.
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