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ABSTRACT

Parallel phonetically aware deep neural networks (PPA-DNNs) and
long short-term memory recurrent neural networks (PPA-LSTM-
RNNs) to enhance frame-by-frame discriminative modeling of spo-
ken language identification are proposed. This idea is inspired
by traditional systems based on parallel phoneme recognition fol-
lowed by language modeling (PPRLM). The proposed methods
utilize multiple senone bottleneck features individually extracted
from language-dependent senone-based DNNs in a frame-by-frame
manner. The multiple senone bottleneck features can yield phonetic
awareness to frame-by-frame DNNs and LSTM-RNNs without los-
ing compatibility to real time applications. In experiments, three
senone-based DNNs are introduced in order to extract senone bot-
tleneck features, and both single use and parallel use of them are
examined. Furthermore, we also examine a combination of PPA-
DNNs and PPA-LSTM-RNNs. The proposed method’s effectiveness
is investigated by comparison with a simple speech aware modeling
and traditional systems based on PPRLM.

Index Terms— Spoken language identification, DNNs, LSTM-
RNNs, phonetic awareness, senone-DNNs

1. INTRODUCTION

Spoken language identification (LID) is a technology that determines
the language label of a speech utterance [1, 2]. LID can be widely
used for multilingual speech applications such as speech translation.
Nowadays, LID based on deep learning technologies is a subject of
great interest [3].

One common approach is to utilize senone-based deep neural
networks (DNNs) trained for automatic speech recognition (ASR).
The senones are defined as states within context-dependent phones
[4]. In fact, senone-based DNNs can capture phonetic awareness.
Phonetic awareness is considered to be important for LID, so tra-
ditional systems have tried to capture phoneme information using a
phoneme recognizer [5]. In recent studies, senone-based DNNs are
being used for extracting statistics in i-vectors [6, 7] or extracting
features (senone posteriorgrams [8], bottleneck features [9, 10, 11])
for i-vector based systems.

Another approach is to construct discriminative models to di-
rectly predict a language label from a speech utterance. In particular,
frame-by-frame discriminative modeling based on DNNs [12, 13] or
long short-term memory recurrent neural networks (LSTM-RNNs)
[14, 15, 16] are attractive because they are compatible with real time
applications and work well for short utterances. In fact, they can
offer early determination of the language label at any time, unlike
the i-vector based systems, because they can perform in a frame-by-
frame manner. In addition, utterance-level classification using the
frame-by-frame discriminative models can be effectively enhanced

by back-end modeling such as sequence summarizing modeling or
generative modeling of posteriorgrams [17, 18].

Our aim with this work is to enhance the LID performance of
the frame-by-frame discriminative modeling. To this end, we fo-
cus on the fact that there is no mechanism for phonetic awareness
in conventional frame-by-frame discriminative modeling. As de-
scribed above, phonetic awareness can be extracted using senone-
based DNNs as bottleneck features. Actually, the extraction is also
performed in a frame-by-frame manner, so phoneme awareness can
be easily transferred to the frame-by-frame discriminative model-
ing. Furthermore, in consideration of the success of a system based
on parallel phoneme recognition followed by language modeling
(PPRLM) [5], parallel use of multiple language dependent senone-
based DNNs will yield further phonetic awareness.

This paper proposes a modeling that combines frame-by-frame
DNNs and LSTM-RNNs with multiple language-dependent senone-
based DNNs. Thus, the proposed methods can be regarded as a
system that combines the two main approaches mentioned above. In
the proposed method, bottleneck features are individually extracted
from language-dependent senone-based DNNs in a frame-by-frame
manner and then used for frame-by-frame DNNs and LSTM-RNNs.
We call the modeling with single senone-based DNNs phonetically
aware DNNs (PA-DNNs) and PA-LSTM-RNNs, and the modeling
with multiple senone-based DNNs parallel PA-DNNs (PPA-DNNs)
and PPA-LSTM-RNNs. An advantage of the proposed methods
is that discriminative performance can be improved without losing
compatibility to real time applications.

The proposed methods are related to the feature augmentation
of DNNs. In ASR fields, speaker aware features or noise aware fea-
tures are introduced into DNNs or LSTM-RNNs [19, 20, 21]. In
addition, a similar idea to our proposed methods was introduced into
DNNs for speech activity detection; however, only single senone-
based DNN was used for extracting bottleneck features [22]. To
the best of our knowledge, this paper is the first work on DNNs and
LSTM-RNNs that utilize parallel bottleneck feature extraction based
on multiple language dependent senone-based DNNs.

Main contributions are summarized as follows.

• This paper introduces three language-dependent senone-
based DNNs in order to extract bottleneck features for con-
structing PPA-DNNs and PPA-LSTM-RNNs. In addition,
we examine a combination of PPA-DNNs and PPA-LSTM-
RNNs.

• This paper also presents speech aware DNNs (SA-DNNs) and
SA-LSTM-RNNs in which bottleneck features extracted from
DNN for speech activity detection (speech/non-speech DNN)
are utilized [23]. We investigate relationships between pho-
netic awareness and speech awareness.

• This paper shows results of a conventional parallel phonet-
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ically aware method based on a PPRLM system. In our
PPRLM system, RNNLMs trained from senone sequences
are used [24].

In Section 2 of this paper, we describe an LID system based
on frame-by-frame DNNs and LSTM-RNNs. The proposed meth-
ods based on PPA-DNNs and PPA-LSTM-RNNs are detailed in Sec-
tion 3. Section 4 describes our experiments using the GlobalPhone
database [25]. We conclude in Section 5 with a brief summary.

2. LID SYSTEM BASED ON
FRAME-BY-FRAME DNNS AND LSTM-RNNS

LID is defined as the problem of determining a language label l̂ from
an input utterance X = x1, · · · ,xT , where xt means an acoustic
feature vector of the t-th frame. LID based on frame-by-frame dis-
criminative modeling is performed by simply averaging the frame-
level prediction score:

l̂ = arg max
l∈L

1

T

T∑
t=1

logP (l|X, t,Θ), (1)

where L represents a set of target languages and Θ is a model pa-
rameter of a discriminative model. P (l|X, t,Θ) represents a poste-
rior probability of label l in the t-th frame. This determination can
be conducted in an online manner. Thus, it supports determination
even before reaching the end of the utterance.

When using frame-by-frame DNNs, the input layer is composed
by stacking a currently-being-processed frame and its left-right con-
texts. The DNN-based frame-level posterior probability is calculated
as

P (l|X, t,Θ) = P (l|it,ΘDNN), (2)

it = [x>
t−M , · · · ,x>

t , · · · ,x>
t+M ]>, (3)

where M denotes context size in the input layer.
Unidirectional LSTM-RNNs can automatically store previous

long-range information in hidden layers without stacking previous
frames. The LSTM-RNN-based frame-level discriminative proba-
bility is calculated as

P (l|X, t,Θ) = P (l|xt,ht−1,ΘLSTM), (4)

where ht−1 represents outputs of the previous hidden layers. In ad-
dition, unidirectional LSTM-RNNs can be fused with DNNs by av-
eraging each log probability.

3. PARALLEL PHONETICALLY AWARE
DNNS AND LSTM-RNNS

This paper proposes PPA-DNNs and PPA-LSTM-RNNs based on
parallel senone bottleneck feature extraction. Figure 1 shows the de-
tailed procedure of the proposed method. First, a parallel bottleneck
feature is extracted from multiple language-dependent senone-based
DNNs. Next, the parallel senone bottleneck feature is input into both
DNNs and LSTM-RNNs. As shown in Fig. 1, the proposed method
also performs in a frame-by-frame manner.

A senone bottleneck feature can be extracted from a senone-
based DNN with a bottleneck layer. The bottleneck feature means
the output of the bottleneck layer. For the senone-based DNN, an in-
put layer is composed by stacking a currently-being-processed frame
and its left-right contexts. A senone bottleneck feature of the t-th

Fig. 1. PPA-DNNs and PPA-LSTM-RNNs based on parallel senone
bottleneck feature extraction.

frame extracted from a senone-based DNN for language s is defined
as

z
(s)
t = f(it;Λ

(s)), (5)

where Λ(s) is a model parameter of a senone-based DNN for lan-
guage s. f() means a function of the bottleneck feature extraction.

A parallel senone bottleneck feature is composed by multiple
senone bottleneck features individually extracted from language-
dependent senone-DNNs. A parallel senone bottleneck feature of
the t-th frame is defined as

bt = [z
(1)
t

>
, · · · , z(S)

t

>
]> (6)

where S is the number of language-dependent senone-based DNNs.
When a single senone-based DNN is used, the parallel bottleneck
feature corresponds to one senone bottleneck feature.

PPA-DNNs and PPA-LSTM-RNNs use the parallel senone bot-
tleneck features for feature augmentation. A frame-level posterior
probability based on PPA-DNN is calculated as

P (l|X, t,Θ) = P (l|̄it,ΘPPADNN), (7)

īt = [i>t , b
>
t ]

>, (8)

where ΘPPADNN is a model parameter of PPA-DNN.
In addition, a frame-level discriminative probability based on

PPA-LSTM-RNNs is calculated as

P (l|X, t,Θ) = P (l|x̄t,ht−1,ΘPPALSTM), (9)

x̄t = [x>
t , b

>
t ]

>, (10)

where ΘPPALSTM is a model parameter of PPA-LSTM-RNN.
PA-DNN and PA-LSTM-RNN correspond to PPA-DNN and

PPA-LSTM-RNN with a single senone bottleneck feature. In ad-
dition, SA-DNN and SA-LSTM-RNN can be constructed using
bottleneck feature extracted from speech/non-speech DNN as well
as PA-DNNs and PA-LSTM-RNN.
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Table 1. Data sets for LID evaluation.
Train Valid Test

French 9,862 (25.3 hours) 308 308
German 9,496 (17.1 hours) 284 303
Korean 7,794 (20.1 hours) 153 160
Mandarin 9,608 (29.3 hours) 203 273
Portuguese 9,568 (24.5 hours) 315 256
Russian 11,549 (24.8 hours) 234 269
Shanghai 2,179 (7.9 hours) 137 227
Spanish 6,500 (20.8 hours) 131 202
Swedish 11,168 (20.4 hours) 154 381
Thai 13,739 (27.3 hours) 100 150
Turkish 6,489 (15.9 hours) 121 281
Vietnamese 18,089 (18.6 hours) 231 371
ALL 116,041 (252.0 hours) 2,371 3,181

4. EXPERIMENTS

4.1. Data sets

For LID evaluation, we used GlobalPhone, a multilingual data cor-
pus [25]. GlobalPhone includes spoken utterances read by native
speakers in several languages. The average utterance duration is
about 7 seconds. We used 12 languages and split them into a training
set (Train), validation set (Valid), and test set (Test). Details on the
number of utterances and the data size are given in Table 1.

In addition, we prepared several data sets to train senone-based
DNNs and speech/non-speech DNNs. Note that these data sets are
not included in the data sets for LID evaluation. Details are given in
Table 2, where the number of labels means the number of senones in
senone-based DNNs.

4.2. Setups

We used 38 dimensional MFCC coefficients (12MFCC, 12∆MFCC,
12∆∆MFCC, ∆power and ∆∆power) as an acoustic feature that is
extracted using 20-msec-long windows shifted by 10 msec.

In addition, we constructed senone-based DNNs and speech/non-
speech DNN from individual data sets. Each DNN had five hidden
layers. The fourth hidden layer was a bottleneck layer and its unit
size was set to 64. Other hidden layers had 1024 units. Output layer
size corresponds to the number of labels shown in Table 2. In order
to train individual DNNs, we used discriminative pre-training to
construct an initial network [26] and then fine-tuned it using mini-
batch stochastic gradient descent (MB-SGD). The validation set was
used for early stopping.

For LID evaluation, the following systems were constructed.

• Phoneme recognition-based systems:
PRLM was a system based on phoneme recognition followed
by language modeling. We used RNNLM in order to model
senone sequences decoded by individual senone-based DNN.
PPRLM was a combination method of three PRLM systems.

• Frame-by-frame DNN-based systems:
All models are DNNs with five hidden layers and 1024 sig-
moid units. In DNN, the input was 418 dimensional acoustic
features formed by stacking the current processed frame and
its ±5 left-right context. In SA-DNN, 64 dimensional bot-
tleneck feature extracted from speech/non-speech DNN was

Table 2. Data sets for speech/non-speech and senone-based DNNs.
Size # of labels

Speech/Non-Speech 85 hours 2
Japanese (Ja) 253 hours 3,072
English (En) 268 hours 2,601
Mandarin (Ma) 374 hours 2,882

added to the input. In PA-DNN, 64 dimensional senone bot-
tleneck feature extracted from language-dependent senone-
based DNN was added to the input. In PPA-DNN, 192 di-
mensional parallel senone bottleneck feature composed by 3
senone bottleneck features was added to the input. For train-
ing, we used discriminative pre-training to construct an initial
network and then fine-tuned it using MB-SGD. The validation
set was used for early stopping.

• Frame-by-frame LSTM-RNN-based systems:
All models are left-to-right unidirectional LSTM-RNNs with
three hidden layers and 512 units. In LSTM-RNN, the in-
put was just 38 dimensional acoustic feature of the target
frame without stacking other frames. In SA-LSTM-RNN, 64
dimensional bottleneck feature extracted from speech/non-
speech DNNs was added to the input. In PA-LSTM-RNN,
64 dimensional senone bottleneck feature extracted from
language-dependent senone-based DNN was added to the in-
put. In PPA-LSTM-RNN, 192 dimensional parallel senone
bottleneck feature composed by three senone bottleneck
features was added to the input. For training, we used dis-
criminative pre-training to construct an initial network and
then fine-tuned it using MB-SGD and back propagation
through time algorithm. The validation set was used for early
stopping.

• Combination systems:
Combination systems of DNN and unidirectional LSTM-
RNN were used. Their classification is conducted by averag-
ing log probabilities individually calculated from DNN and
LSTM-RNN.

4.3. Results

First, we investigated the frame-level LID performance of frame-
by-frame DNNs and LSTM-RNNs since the utterance-level perfor-
mance is affected by the frame-level performance in both the con-
ventional and proposed methods. Table 3 shows the frame-level er-
ror rate (FER) for the validation set and test set.

The results show that FER in both frame-by-frame DNNs and
LSTM-RNNs was improved by introducing individual senone bot-
tleneck features. On the other hand, bottleneck feature extracted
from speech/non-speech DNNs was not so effective compared to
senone bottleneck features. This indicates that speech awareness
is insufficient to improve LID performance compared to phonetic
awareness. The highest performance was attained by using paral-
lel senone bottleneck feature in both DNNs and LSTM-RNNs. This
suggests that parallel use of senone bottleneck features can enhance
phonetic awareness.

Next, we investigated utterance-level LID performance using an
identification task that evaluates hard decision accuracy by selecting
the top scored language. Utterance-level error rate (UER) was used
as the evaluation metric. In addition, for evaluation of early deter-
mination performance, we examined the results achieved after 1 sec
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Table 4. Utterance-level LID performance: UER (%)
Valid Test

System Senone-based DNNs 1 sec 3 sec Whole 1 sec 3 sec Whole
(1). PRLM Ja 38.01 12.78 8.04 40.24 16.41 9.78
(2). PRLM En 39.78 15.53 9.16 42.92 20.02 12.74
(3). PRLM Ma 40.79 15.40 7.98 43.58 21.88 12.01
(4). PPRLM Ja, En, Ma 24.97 7.85 5.33 28.17 9.84 6.80
(5). DNN - 7.77 1.14 0.43 11.29 4.25 3.12
(6). SA-DNN Speech/Non-Speech 7.34 0.64 0.34 9.97 4.00 2.30
(7). PA-DNN Ja 3.97 0.51 0.34 7.08 1.58 0.73
(8). PA-DNN En 6.12 0.98 0.43 7.86 2.39 1.17
(9). PA-DNN Ma 5.57 0.47 0.26 8.21 2.11 0.99
(10). PPA-DNN Ja, En, Ma 4.35 0.34 0.25 6.01 0.85 0.55
(11). LSTM-RNN - 14.34 2.45 0.91 16.54 5.22 2.55
(12). SA-LSTM-RNN Speech/Non-Speech 13.88 2.54 0.68 16.01 4.53 1.83
(13). PA-LSTM-RNN Ja 10.72 1.19 0.34 11.83 2.14 0.73
(14). PA-LSTM-RNN En 12.22 2.13 0.76 14.84 3.21 1.07
(15). PA-LSTM-RNN Ma 11.77 1.86 0.68 12.61 3.05 0.98
(16). PPA-LSTM-RNN Ja, En, Ma 9.33 1.23 0.33 10.56 2.30 0.51
(17). DNN+LSTM-RNN - 5.32 0.89 0.38 9.25 3.65 2.17
(18). PPA-DNN+PPA-LSTM-RNN Ja, En, Ma 2.07 0.38 0.22 4.15 0.82 0.48

Table 3. Frame-level LID performance: FER (%).
System Senone-based DNNs Valid Test
DNN - 42.34 46.29
SA-DNN Speech/Non-Speech 41.45 46.88
PA-DNN Ja 35.64 40.25
PA-DNN En 36.76 42.23
PA-DNN Ma 37.60 42.04
PPA-DNN Ja, En, Ma 34,06 38.84
LSTM-RNN - 16.41 22.36
SA-LSTM-RNN Speech/Non-Speech 16.58 20.40
PA-LSTM-RNN Ja 13.32 16.18
PA-LSTM-RNN En 14.05 17.20
PA-LSTM-RNN Ma 14.01 16.99
PPA-LSTM-RNN Ja, En, Ma 11.76 14.56

and 3 sec. The number of utterances in early determination is the
same as in whole-utterance classification.

The results for the phoneme recognition-based systems are
shown on lines (1) to (4) of Table 4. The PPRLM system that com-
bined each PRLM system could achieve a performance improve-
ment. This means that parallel phonetic awareness was effectively
performed for the conventional systems.

The results for frame-by-frame DNNs are shown on lines (5)
to (10) and those for frame-by-frame LSTM-RNNs are shown on
lines (11) to (16) in Table 4. Frame-by-frame DNNs and LSTM-
RNNs were superior to traditional PRLM systems. LSTM-RNN
outperformed DNN in classifying whole utterances while LSTM-
RNN was inferior to DNN in the early determination task. PA-
DNNs and PA-LSTM-RNNs, which introduced the senone bottle-
neck feature, outperformed standard DNN and LSTM-RNN, respec-
tively. These results confirm that phonetic awareness performed well
for both frame-by-frame DNNs and LSTM-RNNs in the LID task.
On the other hand, as well as the frame-level results, SA-DNN and
SA-LSTM-RNN were inferior to PA-DNNs and PA-LSTM-RNN.

In addition, PPA-DNN and PPA-LSTM-RNN were superior to indi-
vidual PA-DNNs and PA-LSTM in most conditions. This suggests
that parallel phonetic awareness was also effective for state-of-the-
art systems using frame-by-frame DNNs or LSTM-RNNs as well as
the conventional PPRLM system. This means that each senone bot-
tleneck feature had different properties enhancing LID performance.
We conclude that parallel use of multiple senone bottleneck features
is an effective solution in order to utilize individual properties.

The results for combination of DNNs and LSTM-RNNs are
shown on lines (17) and (18). In most conditions, the best result
was attained by PPA-DNN+PPA-LSTM-RNN. This suggests that
the combination of DNN and LSTM-RNN was effective when the
parallel senone bottleneck feature was used.

5. CONCLUSIONS

This paper presented PPA-DNNs and PPA-LSTM-RNNs to utilize
multiple senone bottleneck features individually extracted from
language-dependent senone-based DNNs for LID tasks. The pro-
posed method can introduce strong phonetic awareness to DNNs
and LSTM-RNNs without losing online processing. Experimen-
tal results showed PPA-DNNs and PPA-LSTM-RNNs that utilized
three senone bottleneck features outperformed conventional DNN
and LSTM-RNN in all conditions. Also, our investigation revealed
that multiple senone bottleneck features were more effective than
single use of them, and speech awareness was insufficient compared
to phonetic awareness. Furthermore, a combination of PPA-DNN
and PPA-LSTM-RNN that can also perform in a frame-by-frame
manner exhibited the best performance.

In future work, we will confirm the proposed method’s effective-
ness in a verification task with different data sets. In addition, we will
combine the proposed method with back-end modeling to enhancing
utterance-level classification performance [18]. We will also com-
pare parallel senone bottleneck features with language-independent
bottleneck features that can be extracted from multilingual senone-
based DNNs [27, 28, 29].
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