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ABSTRACT

Since the introduction of deep neural network (DNN)-based
acoustic model, robust automatic speech recognition using
DNN are being in research. Especially in model adapta-
tion, the techniques utilizing auxiliary context features is
known to be a promising technique. Recently, we proposed a
technique which is called two-stage noise-aware training (TS-
NAT). The key idea of TS-NAT is to let the DNN clarify the
relationship among noise estimate, noisy features and pho-
netic target through clean feature representation. However,
although TS-NAT enhances the robustness of the DNN, we
cannot be certain whether TS-NAT describes the clean feature
representation sufficiently. In this paper, we extend TS-NAT
using true noise feature and various DNN training techniques.
It has been shown that the proposed technique outperforms
the conventional DNN-based techniques on Aurora5-task and
mismatched noise conditions.

Index Terms— Deep neural networks (DNNs), robust
speech recognition, noise-aware training (NAT), multi-task
learning (MTL), joint training.

1. INTRODUCTION

Ever since the deep neural network (DNN)-based acoustic
model appeared, the recognition performance of automatic
speech recognition (ASR) has been greatly improved [1, 2,
3, 4]. Based on this achievement, researches on DNN-based
techniques for noise robustness are also in progress. Among
various approaches, adaptation technique employing auxil-
iary features with acoustic context information demonstrated
their potential [5, 6, 7, 8, 9, 10, 11, 12].

One of the simplest methods of these approaches is to
augment the auxiliary features with the input vector of the
network [5, 6]. As an example, the technique referred to as
noise-aware training (NAT) attained state-of-the-art results on
Aurora-4 task [5]. NAT enables the DNN to learn the rela-
tionship among noisy input, noise features and target vectors
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corresponding to the phonetic identity by augmenting an esti-
mate of the noise present in the input signal. Due to its simple
implementation and good performance, NAT has already been
applied actively in speech enhancement and robust ASR [13].

Also, target vectors of DNN can augment the auxiliary
[14]. In other words, the network is trained to solve multiple
tasks simultaneously using a shared set of parameters [7, 8].
This technique is called multi-task learning (MTL). By learn-
ing multiple tasks in parallel, the DNN parameters can learn
additional information about the domain using the target vec-
tors of the secondary task. Meanwhile, the performance of
DNN can be enhanced by giving an appropriate intermedi-
ate concept which the DNN should represent in the mid-level
[15]. Due to this reason, recent researches on joint training
technique of DNN have drawn attention [9, 10]. The joint
training technique builds a DNN by concatenating two inde-
pendently trained DNNs and jointly adjusting the parameters.

However, simply setting the auxiliary features as the input
to a DNN may not necessarily be the best approach for ex-
ploiting context information. In this sense, we have recently
proposed a novel approach which takes advantage of the
inherent robustness of the NAT framework more efficiently
[16], called the two-stage noise-aware training (TS-NAT).
The key idea of TS-NAT is to let the DNN clarify the rela-
tionship among noise estimate, noisy features and phonetic
targets through the clean feature representation. In order
to accomplish this, TS-NAT cascades two individually fine-
tuned DNNs into a single DNN. The first DNN performs
reconstruction of the clean features from noisy features when
noise estimates are augmented, and the next DNN attempts to
learn the mapping between the reconstructed features and the
phonetic targets. It has been shown that TS-NAT outperforms
the conventional NAT on Aurora-5 task.

It is certain that the noise estimate feature contributes to
the clean feature reconstruction. However, we cannot deny
that there exists a limitation in describing the clean feature
representation from the information of noisy and noise esti-
mate features. This distorts the reconstruction of clean feature
and consequently interrupts the connection between input of
the DNN and the corresponding phonetic target. Particularly,
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this can be a serious problem in mismatched noise conditions.
In this paper, we extend our previous work for supple-

menting the aforementioned issue of TS-NAT. The main idea
of the proposed approach is to design a delicate DNN-based
acoustic model which is aware of real noise information and
robust to mismatched noise conditions. To implement this,
the proposed approach combines TS-NAT with two well-
known DNN-based adaptation techniques, MTL and joint
training [7, 8, 9, 10]. Also, we used rectified linear unit
(ReLU) which is known to have better performance than
sigmoid in a very deep network[17].

The performance of the proposed approach is evaluated on
the Aurora-5 task and mismatched noise conditions, and bet-
ter performance was observed compared to the conventional
DNN techniques.

2. RELATED RESEARCH

In this work, for a simple problem formulation, we will
only consider acoustic environments where the background
noises are dominant factors of speech degradation. Let yt ,
xt , nt and st denote the observed noisy feature, the corre-
sponding unknown clean feature, the corrupting noise and
the HMM state identity being extracted at the t-th frame , re-
spectively. Additionally, we denote a subsequence of vectors
xm1

xm1+1 · · ·xm2
from frame index m1 to m2 as xm2

m1
.

2.1. Noise-aware training

Under the general framework of HMM-based recognition, we
assume that there exists an unknown underlying function that
approximates the posterior probabilities of the HMM states
given as follows:

p(st |yT1 ) ∼= f(yt+τ
t−τ ,n

t+τ
t−τ ) (1)

where f(·) represents the function that maps the noisy and
noise features to the corresponding HMM state identity which
contains phonetic information, T denotes the length of the in-
put feature, and the subscript τ represents the temporal cov-
erage which is required for figuring out the contextual infor-
mation of the speech signal.

Since the true noise features nt+τ
t−τ in (1) are unknown,

NAT replaces them with a single noise estimate. The input
vector of NAT is formed by augmenting the noise estimate
with a window of consecutive frames of noisy feature, i.e.,

vt = [yt+τ
t−τ , n̂t ] (2)

where yt+τ
t−τ represents a window of 2τ + 1 frames of noisy

speech features and n̂t represents the noise estimate.

2.2. Two-stage noise-aware training

The basic idea of TS-NAT starts from the assumption that the
underlying function f(·) in (1) can be expressed as a compo-
sition of two separate functions as follows:

p(st |yT1 ) ∼= f(yt+τ
t−τ ,n

t+τ
t−τ )

∼= h ◦ g(yt+τ
t−τ ,n

t+τ
t−τ ) (3)
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Fig. 1. DNN structure of TS-NAT and its extension.

where the output of g(·) is a clean feature vector stream,

xt+τ
t−τ
∼= g(yt+τ

t−τ ,n
t+τ
t−τ ), (4)

and

p(st |yT1 ) ∼= h(xt+τ
t−τ ). (5)

In (3)-(5), g(·) represents a function maps the noisy and noise
features to the clean speech features and h(·) is a function that
predicts the phonetic target based on the clean speech feature
stream.

The unified DNN is constructed by cascading two indi-
vidually fine-tuned DNNs where each DNN approximates the
function g(·) and h(·) in (3). The first DNN which is called
the lower DNN, separates the clean speech features from the
corruption noises. For training the lower DNN, we apply the
deep denoising autoencoder which has proven its capability
of reducing the distortion in the original noisy feature [18].
The second DNN which is called the upper DNN, models the
relationship between the output vector generated by the lower
DNN and the phonetic target.

3. PROPOSED APPROACH

Although TS-NAT enhances the robustness of the DNN, we
cannot be certain whether TS-NAT describes the clean fea-
ture representation sufficiently. Unlike expression (4), we re-
placed the true noise feature stream with noise estimate fea-
tures in the actual implementation. Therefore, actual mapping
from noisy and noise estimate features to clean features can
be expressed as follows:

l(yt+τ
t−τ , n̂t) = x̂t+τ

t−τ = xt+τ
t−τ + υt+τt−τ (6)
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where l(·) represents the actual function of the lower DNN
that reconstructs clean features from the noisy and noise es-
timate features and υ is the reconstruction error between the
clean and the clean estimate features. In other words, insuffi-
cient information about the true noise makes the lower DNN
distort reconstructed clean features and this naturally leads to
improper mapping between the input and phonetic target. To
compensate for this problem, we extend TS-NAT by applying
the techniques described in the section below. In this work,
some individual modifications are applied to both the lower
and upper networks to improve the whole system. Therefore,
we call these two networks as extended lower and upper net-
work respectively.

3.1. Multi-task learning

In a general MTL framework, multi-task objective function
JMTL is expressed as follows:

JMTL = J + αJaux (7)

where J and Jaux denote the objective functions of primary
and secondary tasks respectively, and α is the weight param-
eter which determines how much importance the secondary
task has. After the training is over, only the primary task is
performed and the parameters associated with the output of
the secondary task are discarded.

In this work, MTL is applied to the lower DNN with true
noise feature. Specifically, the target vector of the lower DNN
adds noise feature corresponding to noise estimate feature of
the input vector. Therefore, the objective function of the ex-
tended lower DNN JL can be represented as follows:

JL =
∑
t

||ot − ôt ||2 + α
∑
t

||nt − n̂t ||2 (8)

where ot and ôt denote the target and output vectors of the
lower DNN. By flowing back the information of the true noise
feature, the extended lower DNN can absorb the environmen-
tal information more distinctly. Particularly, the shared struc-
ture serves to improve the generalization of the model and its
accuracy on an unseen test set [7]. In this technique, α was
set to 1.

3.2. Joint training

As in TS-NAT, the extended upper DNN learns the mapping
between the output vector of the extended lower DNN ôt and
the corresponding one-hot encoding label which contains in-
formation of the HMM states.

After training the extended upper DNN, two different net-
works are cascaded to form a single larger DNN and the uni-
fied DNN jointly adjusts the weights using the backpropaga-
tion algorithm. In detail, the error signal between the pho-
netic target and the output of the unified DNN flows back to
the clean estimate feature layer and the extended lower DNN,
consequently training all the parameters. With this series of

processes, learning the relationship among the noisy, noise
estimate, true noise features and phonetic target labels can be
enhanced by guiding the DNN through the intermediate level
features [15].

4. EXPERIMENTS

To evaluate the speech recognition performance of the pro-
posed approach, we performed a series of experiments in
Aurora-5 task [19].

4.1. Aurora-5 task and GMM-HMM system

The Aurora-5 task was developed to investigate the perfor-
mance of speech recognition for speech recorded with hands-
free devices in noisy room environments. The test data con-
sisted of two sets: G. 712 filtered and non-filtered sets. The G.
712 filtered set comprised of clean speech utterances where
randomly selected car or public space noise samples were
added at signal-to-noise ratio (SNR) levels of 0 to 15 dB. The
non-filtered set consisted of clean speech utterances where
randomly selected interior noises were augmented at the same
SNR range mentioned above.

In these experiments, we used multi-condition training
data for construction of all the DNN-based acoustic models.
In order to create phonetic labels of the training data, the
GMM-HMM systems were built based on the clean speech
data provided by the G. 712 filtered and non-filtered data sets
which is counterpart of multi-condition training data. These
systems consisted of 179 HMMs states and 4 Gaussians per
state trained using maximum likelihood estimation. The num-
ber of utterances used for HMM training was 8623 for each
data set. The input features were 39-dimensional MFCC fea-
tures (static plus first and second order delta features) and cep-
stral mean normalization was performed. The training of the
HMM parameters and Viterbi decoding for speech recogni-
tion was carried out using HTK [20].

4.2. Training and structures of DNN-based techniques

The performance of the proposed method was compared with
three different versions of DNN-based approaches. The com-
pared techniques are

• NAT: Noise-aware training [5],

• NAT + MTL: Combination of NAT and MTL to per-
form both the primary acoustic modeling task and the
secondary feature enhancement task,

• TS-NAT: Two-stage noise-aware training [16],

For training all the DNN-based acoustic models, log mel fil-
terbank (FBANK) feature of 23-dimension was used. As in
the case of MFCC feature above, both the first and second-
order derivative of FBANK features were used. The input
layers for all the techniques had a total of 828 visible units
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Table 1. WERs (%) on Aurora-5 task according to variety of DNN-based acoustic models
SNR (dB) Non-filtered G.712 filtered
Method NAT NAT + MTL TS-NAT Proposed NAT NAT + MTL TS-NAT Proposed
Dropout 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 %

Clean 1.42 1.28 1.23 1.12 0.93 0.95 0.95 0.89 0.92 0.78 0.82 0.71 0.72 0.71 0.65 0.70
15 1.88 1.87 1.71 1.73 1.54 1.50 1.49 1.28 1.25 1.18 1.11 1.10 0.95 0.90 0.89 0.82
10 3.34 3.14 3.10 2.94 2.90 2.58 2.74 2.35 2.15 1.87 1.98 1.76 1.56 1.28 1.52 1.37
5 7.87 7.55 7.42 7.28 7.12 6.60 6.88 6.23 4.52 4.35 4.31 4.21 4.03 3.65 3.89 3.52
0 20.73 20.01 20.21 19.78 19.62 19.08 19.14 18.87 12.67 12.25 12.24 12.02 11.90 11.54 11.58 11.29

Average 7.05 6.77 6.73 6.57 6.42 6.14 6.24 5.92 4.30 4.09 4.09 3.96 3.83 3.67 3.71 3.54

Table 2. WERs (%) on the noise-mismatched test set according to variety of DNN-based acoustic models
SNR (dB) Non-filtered G.712 filtered
Method NAT NAT + MTL TS-NAT Proposed NAT NAT + MTL TS-NAT Proposed
Dropout 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 % 0 % 20 %

Clean 1.42 1.28 1.23 1.12 0.93 0.95 0.95 0.89 0.92 0.78 0.82 0.71 0.72 0.71 0.65 0.70
15 3.18 3.12 2.95 2.92 2.87 2.80 2.81 2.62 4.44 4.29 4.05 3.98 4.18 3.97 4.30 4.05
10 5.98 5.88 5.65 5.64 5.55 5.45 5.51 5.01 10.78 10.35 10.28 9.78 8.83 8.23 8.12 7.89
5 12.43 12.11 12.21 11.85 11.72 11.36 10.98 10.56 18.82 18.12 18.04 17.78 17.12 15.85 15.23 14.89
0 25.24 24.02 24.76 23.75 22.26 21.50 21.24 19.76 30.23 29.75 29.88 29.25 29.11 28.25 27.57 26.78

Average 9.65 9.28 9.36 9.06 8.67 8.41 8.30 7.77 13.04 12.66 12.61 12.30 11.99 11.40 11.17 10.86

by augmenting a context window of 11 consecutive FBANK
features with the IMM-based noise estimate [21].

Among these techniques, NAT + MTL is a technique
which uses parallel training data for MTL, where the network
is trained to perform both the primary acoustic modeling task
and the secondary feature enhancement task with the input
vector (2). This can be interpreted as a conventional model
adaptation approach which utilizes same resources with our
proposed technique [8]. The target vector dimension of NAT
+ MTL is 248 by adding the corresponding clean feature of
current frame (69 dim.) to the phonetic target (179 dim.).

All the techniques had 11 hidden layers with 2048 ReLUs
except for the intermediate layers of 759 linear units from TS-
NAT and the proposed technique. The final output layers of
the techniques had soft-max 179 units, each corresponding to
the state of the HMM systems. The parameters of the DNN-
based techniques were randomly initialized and fine-tuned us-
ing stochastic gradient descent (SGD) algorithm.

Mini-batch size for the SGD algorithm was set to be 256
for all of the DNN-based techniques. The momentum was
set to be 0.5 at the first epoch and increased to 0.9 afterward.
The learning rate was initially set to be 0.01 and exponentially
decayed over each epoch with a decaying factor of 0.9 except
for the cases of two lower DNNs and joint training of the
proposed method. For two lower DNNs and the joint training,
learning rate was initially set to be 0.0005 and exponentially
decayed over each epoch with a decaying factor of 0.95. All
the training of DNN-based techniques were stopped after 50
epochs.

All the techniques evaluated in this experiments were
based on wide and very deep DNN structures. To prevent
overfitting, dropout was also applied [22], [23]. The retention
rate of dropout was 0.8.

4.3. Evaluations

Table 1 shows the results of the various DNN-based tech-
niques. We can see that the proposed method outperformed
other DNN-based techniques irrespective of the SNRs. Fur-
ther improvement was observed when the dropout training
was applied. With dropout training performed, the average
relative error rate reductions (RERRs) of Proposed over NAT
+ MTL were 9.83% and 10.61% in non-filtered and G.712
filtered set.

To evaluate the proposed technique in training-test mis-
matched noise conditions, we constructed the noise-mismatched
test sets by mixing the clean speech of non-filtered and G.
712 filtered sets with four noises included in 100 non-speech
environmental sounds [24]. Four types of noise were chosen
from 100 noise types : animal, water, wind sound and phone
dialing. Each noise types were added to the G. 712 filtered
and non-filtered sets at SNRs between 0 and 15 dB with equal
rate. From the results in Table 2, we can see that the proposed
technique is more effective in mismatched noise conditions.
Especially, when dropout training is performed the average
relative error rate reductions (RERRs) of Proposed over NAT
+ MTL were 14.22% and 11.69% in noise-mismatched non-
filtered and G.712 filtered set.

5. CONCLUSION

In this paper, we proposed an extension of TS-NAT which
supplements the information needed for clean feature repre-
sentation. Through a series of experiments, we have found
that the proposed technique outperforms the conventional
techniques in word accuracy on the Aurora-5 task and mis-
matched noise conditions. Future study will deal with tech-
niques considering other environmental factors such as rever-
beration.
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