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ABSTRACT

The use of auxiliary features is an effective way to improve the
performance of deep neural network (DNN)-based acoustic models.
Most approaches use auxiliary features that represent the speaker or
the environment. These auxiliary features are usually computed in-
dependently of the acoustic model. This paper investigates a types
of auxiliary features obtained from the output of a hidden layer that
feeds back to the input layer of the network. Since the auxiliary fea-
tures are extracted from the hidden layer of the network no external
information is required such as the speaker or the environment. Ex-
perimentally, by forcing the extraction of the auxiliary features from
the same networks, we can further improve the performance of the
overall network and reduce the total number of parameters used. We
tested this approach with different deep neural network architectures
including: deep neural networks, convolutional neural networks and
unfolded recurrent convolutional networks. We confirmed the effec-
tiveness of this approach on the CHiME3 dataset.

Index Terms— deep neural network, auxiliary features, bottle-
neck features, acoustic modeling

1. INTRODUCTION

Deep neural networks (DNNs) have become an extremely powerful
tool for many classification tasks and especially for automatic speech
recognition (ASR) [1]. Although DNN-based approaches are clearly
superior to the traditional Gaussian Mixture Model/Hidden Markov
Model (GMM/HMM), the ASR performance still decreases signif-
icantly in real applications for many reasons including an environ-
ment mismatch and speaker variations. Augmenting input features
with auxiliary features representing noise or a speaker is one effec-
tive way to mitigate this problem. Approaches that augment fea-
tures are effective because they generally make the input features
more discriminative than the original input features by concatenat-
ing them with addition information. Many approaches have been
proposed such as augmenting the input features with a noise estimate
[2], environment type [3], uncertainty [4], bottle-neck features [5, 6],
high-level features [7, 8], I-vectors [9, 10, 11, 12, 13] or summary
vectors [14]. Such approaches are effective in many tasks, includ-
ing noise robustness, speaker adaptation and low resource language
speech recognition.

Bottle-neck features can be classified into one type of auxiliary
input feature. Using bottle-neck features turns out to be very ef-
fective but they are usually used in combination with GMM/HMM
models [15, 16, 17, 18, 19], which are less powerful than hybrid
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DNN/HMM models. The bottle-neck features used in GMM/HMM
models are extracted from one hidden layer with a small number
of neurons of a neural network where the output of the neural net-
work predicts the clean features or the HMM state posteriors. A
GMM/HMM model is trained on the new features, which are ob-
tained by concatenating bottle-neck features and MFCC features.
More recently, other bottle-neck feature approaches that do not re-
quire GMM/HMM model have been investigated such as high level
features extraction [7] and Prediction Adaptation Correction (PAC)
[5, 6]. The PAC approach employs two separate networks. The
first network is used to extract bottle-neck features and their con-
text expansion while the second network receives the input features
with their corresponding bottle-neck features and tries to correct the
prediction from the first network. Two separate objective functions
are minimized jointly. This method realized consistent improvement
performance in a low resource language speech recognition task [6].

In this paper, we propose another approach for obtaining aux-
iliary input features. In a similar way to bottle-neck features, the
proposed auxiliary features are obtained from a hidden layer in a
neural network. However, here we propose sharing the same net-
work parameters for bottle-neck extraction and classification. To
exploit such auxiliary features in the neural network, we perform
two forward-passes sequentially on the same network. At the first
forward-pass, auxiliary features are initialized with 0, and then the
input features are augmented with auxiliary features before propa-
gating through the network to obtain the output of the hidden layer
right before the output layer. The auxiliary features are then com-
puted by applying a linear layer to the output of the hidden layer.
Subsequently, these auxiliary features of the deep neural networks
are transferred back to the input layer of the network and again aug-
mented with the same input features to compute a new output at the
second forward pass. Note that by initializing the auxiliary features
with zeros, two forward passes can be performed on the same net-
work. These types of auxiliary features and bottle-neck features are
somewhat similar except that we use the same network and there is
no great dimensional reduction at the hidden layer with of the pro-
posed auxiliary feature extraction.

In the remainder of the paper, we introduce the auxiliary features
and describe how to exploit the auxiliary features in some conven-
tional architectures of neural network in Section 2. Related work is
presented in Section 4. We analyze our experiments on the CHiME3
dataset in Section 5. Finally, Section 6 provides a conclusion and
presents some potential future research directions.
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Fig. 1. Schematic diagram of proposed method.

2. FEEDBACK CONNECTION

2.1. Principle

In acoustic modeling tasks, a DNN-based classifier receives input
features and then outputs the corresponding HMM state posterior
probability vectors with the hope that these output vectors match
the desired state labels as closely as possible. The network parame-
ters are adjusted by minimizing the loss function between the HMM
state posterior probability vectors and the desired state labels. The
desired state labels, which encode the states, are perfectly distin-
guished. Ideally, we anticipate that using the estimation of the de-
sired state labels as auxiliary input features somehow they can in-
crease the discrimination of the input features themselves. Increas-
ing the discrimination between input features makes the DNN clas-
sifier easy to classify. To obtain an estimation of the desired state
labels, we might need to perform an independent forward pass on
another DNN classifier.

There have been several studies [7, 5, 6] showing that exploiting
prediction for a simple classifier as an additional feature to a second
classifier can improve performance. Usually, such approaches use
different classifiers for the feature extraction stage and actual clas-
sification stage. In this work we investigate whether or not we can
implement a similar concept using the same classifier for the two
stages. This is realized using a feedback connection.

2.2. Implementation

This part will start with the general architecture of the proposed ap-
proach and then describe in the detail the implementations of a deep
fully connected network, a convolutional network and an unfolded
recurrent convolutional network. The general architecture of the
proposed approach can be seen in Fig. 1. The top figure shows
the folded form and the bottom figure shows the unfolded form of
the proposed approach. In the unfolded form which is similar to our

implementation, there are two networks that share the same param-
eters. The first network receives the input features and the auxiliary
features a0 initialized at 0. Once the first forward pass is performed,
the new auxiliary feature a1 is obtained. The auxiliary features are
extracted from the hidden layer right before the output layer with a
non-linearity activation function. Since the output vector of the net-
work is usually very big, we use a connection layer to reduce the
dimensions of the auxiliary features. The second network receives
the same input features and the auxiliary features a1 are obtained
from the first forward pass. The connection layer is composed of a
fully connected layer followed by a non-linearity activation function.
It is important to note that the feedback connection is different from
the recurrent connection in an RNN since the feedback comes from
the same time frame. Moreover, our approach can also be applied to
RNN architectures. To clarify our proposed approach we provide be-
low a simple implementation for the 2-hidden-layers network shown
in Fig. 1. A sample implementation for fully connected network can
be expressed in pseudo-code:

a0 = [0 . . . 0]T (1)

z0 = [xT ,aT
0 ] (2)

h
(1)
1 = σ(W(1) ∗ z0 + b(1)) (3)

h
(2)
1 = σ(W(2) ∗ h(1)

0 + b(2)) (4)

a1 = σ(Wd ∗ h(2)
1 + bd) (5)

z1 = [xT ,aT
1 ] (6)

h
(1)
2 = σ(W(1) ∗ z1 + b(1)) (7)

h
(2)
2 = σ(W(2) ∗ h(1)

1 + b(2)) (8)

y = W(3) ∗ h(2)
2 + b(3) (9)

Here the x is the input feature. a0 and a1 are the initialized auxiliary
features and the auxiliary features obtained from the first forward
pass. σ denotes the non-linearity activation function. W(i) and b(i)

are the weight matrices and bias vectors of the ith layers. h
(i)
1 and

h
(i)
2 are the outputs of the ith layers for the 1st and 2nd forward

passes, respectively. Wd and bd are the weight matrix and bias vec-
tor of the connection layer respectively, y is the output of network
right before the soft-max layer. If there are two classifiers are used,
then the number of parameters will be roughly double that of a con-
ventional DNN. By sharing parameters between two forward passes
as shown in the pseudo-code, we need only one more fully connected
layer to significantly reduce the total number of parameters used. In
other words, this approach can potentially be applied to a more com-
plex network. In the following, we will explaining in more detail the
use of auxiliary features in different architectures.

3. INVESTIGATED NETWORK ARCHITECTURE

The feedback connection is a general one and can be used with any
network architecture. We tested this approach for three different con-
figurations which are detailed below.

3.1. Deep fully connected network

In a simple case, the deep fully connected network has 5 layers with
sigmoid activation functions used at all layers. The implementation
of a deep fully connected network with a feedback connection is
similar to the above pseudo-code with more layers. The connection
layer has only one fully connected layer to reduce the dimensions
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of the auxiliary features. We reduce the dimensions to those of the
input features. Note that dropout is used at every fully connected
layer and right after the non-linear activation functions.

3.2. Convolutional neural network

The configuration of this simple CNN can be found in [20]. The
CNN we used here has two convolutional layers each followed by
a max-pooling layer. One MLP with three fully connected layers
is used on the top of the last max-pooling layer to predict the state
posterior probabilities. Dropout is used at all fully connected layers
except the output layer. The auxiliary features are extracted at the
second fully connected layer of the MLP. One connection layer is
also used to transfer the auxiliary features to the input layer. To be
consistent with CNN, the output vector of the connection layer is
reformed so that it has a similar shape to the input features. The
auxiliary features are then treated as additional feature maps to the
input of the first CNN layer. We used two separate convolutional
layers to process the auxiliary features and the input features.

3.3. Unfolded recurrent convolutional neural network

Our implementation of the unfolded recurrent convolutional neural
network (uRNN-CNN) is inspired by the unfolded recurrent neural
network [21]. The architecture of the network is shown in Figure 2.
Similar to [21], input features with a certain number of frames are
divided into T+1 blocks with a smaller number of frames where the
next block is shifted 1 frame to the right of the current block. The
frame blocks are denoted as xt=0, xt=1, xt=2...xt=T . Each block is
input into the CNN described in Section 3.2. Note that the filter size
of the first convolutional layer is smaller than the filter size in the
Section 3.2 due to the input features having fewer number of frames
than those in Section 3.2. The output of the CNNs is input into
3-layer MLPs to predict the state posterior probabilities. One recur-
rent connection is used to connect the hidden layer of the MLPs of
the current block to the hidden layer of the MLPs of the next block.
Dropout is used for both recurrent and non-recurrent fully connected
layers at the frame level. We found that using dropout in such way
provides superior performance compared to using drop-out at the
non-recurrent layer only. Note that, each recurrent layer has its own
dropout meaning that each recurrent connection is differently dis-
connected for one sample in one mini-batch. One connection layer
is also used to transfer the auxiliary features to the input layer. The
output vector of the connection layer is reformed so that it has a
similar shape to one block of the input features. Similar to CNN,
we used two separate convolutional layers to process the auxiliary
features and the input features.

4. RELATION TO PRIOR WORK

The proposed method/architecture shares some similarities with
other approaches [7, 5, 6] since both use information in addition
to the input features with the aim of obtaining a better HMM state
posterior probabilities at the network output.

However, compared with [5, 6], this approach has few differ-
ences: first, sharing parameters between two forward-pass computa-
tion steps greatly reduces the number of parameters by up to roughly
50% in the DNN configuration described in Section 3.1. Moreover, it
feasible to apply it to larger, more complex networks since it needs
only one more connection layer. Because two networks share the
same parameters, only one objective function is used, which may ar-
guably simplify training. Second, this approach uses only the output
of the hidden layer of the network itself so no external information is
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Fig. 2. Unfolded recurrent convolutional neural network (uRNN-
CNN) with auxiliary features. The Cv,Max, F,C mean a convolu-
tional, a max-pooling, a fully connected layers and connection layer,
respectively

required. Third, this approach is also evaluated on different general
architectures of neural networks.

This approach is more similar to [7] because neither approaches
uses external information. In [7], DNN-based feature extraction
followed by a (shallow) sequence classifier but here we used more
deeper classifier. In addition, sharing parameters between two
forward-pass computation steps is a contribution of this approach
compared to that described in [7]. Moreover, an effort of our ap-
proach is to show how to exploit auxiliary features for a stronger
baseline such as CNN and uRNN-CNN networks in an efficient way.

5. EXPERIMENTAL

5.1. Overview of CHiME3 task

We performed experiments using the CHiME-3 corpus [22], which
consists of real speech recordings collected in four different envi-
ronments, i.e. cafe (CAF), street junction (STR), public transport
(BUS), and pedestrian area (PED). The corpus also includes sim-
ulated training and test data sets. In this study, we used the real
data for evaluation. The corpus consists of read speech, where the
prompts were taken from the WSJ0 corpus. The training set com-
prises 1600 real and 7138 simulated utterances, which amounts to
18 hours of speech. The development and evaluation sets for the real
recordings consist of 1640 and 1320 utterances, respectively, spoken
by four different speakers.

5.2. Experimental settings

We used speech features consisting of 40 log mel filterbank coef-
ficients appended with static, ∆ and ∆∆ coefficients. One speech
feature is a 1320 dimensional vector. These features were extracted
by using a 25-msec sliding window with a 10-msec shift. The speech
features were processed with utterance level cepstral mean normal-
ization, and further normalized using mean and variance normaliza-
tion parameters calculated on the training data. In all the network
configurations, a soft-max layer is used to compute the HMM state
posteriors. The output consists of 5976 output units corresponding
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Table 1. WER for the CHiME3 development set on noisy speech.

Methods BUS CAF PED STR Ave
DNN 21.96 15.50 12.01 15.72 16.30
DNN + BN 21.63 15.53 11.08 15.31 15.88
DNN wo sharing 20.87 14.78 11.34 15.26 15.56
DNN w sharing 21.26 14.35 11.17 15.10 15.47

Table 2. WER for the CHiME3 eval set on noisy speech.

Methods BUS CAF PED STR Ave
DNN 36.66 28.45 23.36 18.85 26.83
DNN + BN 37.32 28.89 24.23 17.94 27.09
DNN wo sharing 35.30 26.99 22.16 17.10 25.38
DNN w sharing 34.60 26.82 21.47 17.06 24.98

to the HMM states. The acoustic model was trained using only one
channel of audio data from channel 5. We trained the acoustic model
using mini-batch stochastic gradient descent (SGD) to minimize the
cross entropy criterion. All the network parameters were randomly
initialized. We used an initial learning rate of 0.08, a momentum
of 0.9 and a batch size of 128. The learning rate was gradually de-
creased when the frame accuracy did not improve for a cross vali-
dation set. The learning was stopped after 40 epochs. The dropout
rate was set at 0.5 for all configurations. We used a trigram language
model for decoding.

Our DNN baseline has 5 hidden layers. Each hidden layer
has 2048 neurons. We employed 11 concatenated 120 × 1 speech
features as the input to the DNN. The input features are formed
in a 1320 dimensional vector. The connection layer has only one
fully connected layer to transfer the auxiliary features to a 1320-
dimension vector.

In our simple CNN baseline, the first convolutional layer uses
(5 × 11) filters, 3 input and 180 output feature maps. The second
convolutional layer uses (1 × 5) filters, 180 input and 180 output
feature maps. After each convolution layer, the resolution of the
output feature map is reduced using max-pooling. Three fully con-
nected layers with 2048 output nodes are used. These features were
arranged in three (40 × 11) input feature maps, one for each static,
∆ and ∆∆ coefficients. The connection layer has only one fully
connected layer with which to transfer the auxiliary features to a
1320-dimension vector. This auxiliary features are then reformed so
that they have a similar shape to the input features.

In our uRNN-CNN, 11 frames of input features are divided into
five 7-frame blocks. The connection layer has only one fully con-
nected layer with which to transfer the auxiliary features to an 840-
dimension vector. Again, this auxiliary features are then reformed
so that they have a similar shape to the input features.

5.3. Results

5.3.1. Preliminary result with DNN

We performed an experiment with the DNN baseline and obtain a
26.83% WER on the evaluation set as shown the Table 2. With DNN
+ bottle-neck features (DNN+BN), we first trained the bottle-neck
features in advance using the cross-entropy loss function. The 80-
dimension bottle-neck features are then extracted from the 4th layer
of an DNN network that has 5 hidden layers. The input features are
then concatenated with the bottle-neck features. The DNN network
which has same architecture as the DNN baseline is trained on these
concatenated features. As shown in Table 2, the (DNN+BN)’ results

Table 3. WER for the CHiME3 development set on noisy speech.

Methods BUS CAF PED STR Ave
CNN 18.51 10.97 9.25 12.59 12.83
CNN + aux 18.07 10.87 8.88 12.25 12.51
uRNN-CNN 17.60 10.40 8.19 11.46 11.91
uRNN-CNN + aux 16.83 9.53 7.77 10.77 11.22

Table 4. WER for the CHiME3 eval set on noisy speech.

Methods BUS CAF PED STR Ave
CNN 28.62 23.07 18.01 15.46 21.29
CNN + aux 27.37 22.36 17.83 14.98 20.63
uRNN-CNN 28.92 21.63 17.19 14.29 20.50
uRNN-CNN + aux 26.81 20.64 16.59 13.63 19.41

are worse than the DNN baseline results on the evaluation set (al-
though it has a better results on development set). A configuration
(DNN wo sharing) is formed that has one DNN for computing aux-
iliary features and another DNN for classification. In this configu-
ration, two cross-entropy objective functions are used independently
for auxiliary extraction and classification. We set the weight at 0.5
for each objective function. As can be seen in Table 1 and Table
2, this configuration obtained a 25.38% WER which is significantly
better than the DNN baseline. When two DNNs share the same pa-
rameters (DNN w sharing), we obtained further improvement. We
achieves a 24.98% WER which is a 0.4% absolute WER reduction
compared with using two separate DNN networks. It turns our that
by forcing two networks to have the same parameters, we can further
improve network performance and reduce the number of parameters
which is greatly required for DNN applications.

5.3.2. Results with other architectures

Similar to the preliminary results, augmenting the auxiliary features
also consistently provided better performance than the CNN and
uRNN-CNN baselines as shown in Table 3 and Table 4. More pre-
cisely, it achieved 0.6% and 1.1% absolute WER reductions com-
pared with the CNN and uRNN-CNN baselines, respectively. Aug-
menting auxiliary features to the deep fully connected network is
a straightforward implementation that simply involves concatenat-
ing auxiliary features with input features. However, with CNN or
uRNN-CNN, it is better to use two convolution layers separately;
one for the input features and other one for the auxiliary features.
Concatenating input features with auxiliary features resulted in sig-
nificantly worse performance than using two separate convolutional
layers. This might be because the contiguity between the input fea-
tures and the auxiliary features makes networks difficult to distin-
guish.

6. CONCLUSION

This paper presented a way to exploit the discrimination of the out-
put of the deeper layer to increase the performance of the network
itself even without using external information. We found that aug-
menting the input features with the output of the last hidden layer of
the same network provided significant improvements compared with
a conventional network. The approach consistently outperformed to
all network architecture baselines. In the future, we will investi-
gate this approach into relation adaptation tasks and apply it to more
complex and deeper networks.
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