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ABSTRACT

In this paper, we investigate the applicability and effective-
ness of advanced feature compensation techniques in devis-
ing a robust front-end for Automatic Speech Recognition
(ASR). First, the Vector Taylor Series (VTS) equations are
altered by bringing in the auditory masking factor. The
resultant VTS approximation is used to compensate the pa-
rameters of a clean speech model and a Minimum Mean
Square Error (MMSE) estimate is used to estimate the clean
speech features from noisy features. Second, we apply root-
compression instead of conventional log-compression to the
mel-filter banks energy. Third, we apply a frame selection
method to eliminate the noise dominated frames to improve
the performance in high noise scenarios. The proposed al-
gorithms are validated on noise corrupted Librispeech and
TIMIT speech recognition databases and are shown to pro-
vide significant gain in performance.

Index Terms— Noise robust speech recognition, Au-
ditory Masking, Vector Taylor series, Root Compression,
Frame Suitability Measure.

1. INTRODUCTION

The performance of the ASR systems degrade significantly
due to adverse conditions in the test environment. Hence,
incorporation of ASR system in real life applications remains
limited. To mitigate the effect of noise in ASR systems,
different approaches have been proposed. In feature do-
main, Cepstral Mean and Variance Normalization technique
is applied on the top of Mel-Frequency Cepstral Coefficient
(MFCC) features to deal with channel mismatch. Besides
this, other kind of features like, auditory based modulation
spectral feature for reverberant noise [1] and deep belief
network based tandem features [2] have been employed for
noise robust ASR. Weighted denoising auto-encoder based
on Weiner filter has also been investigated for noise robust
speech recognition [3]. Auditory feature based on gam-
matone filter [4] has been explored as an alternative to the
MFCCs. Other than this, signal pre-processing technique

like, non-negative matrix factorization method [5, 6] has been
attempted for removing noise from the signal.

Deep recurrent denoising autoencoder (DRADE) is a
process of extracting clean features from the noisy features
[7]. The DRADE technique outperformed SPLICE based
denoising method in [8]. But, the DRADE demands lot of
stereo data (clean and noisy). Different types of noise ro-
bust features like normalized modulation coefficients (NMC),
modulation of medium duration speech amplitudes (MMe-
DuSA) and Damped Oscillator Coefficients (DOC) have been
attempted in [9] for noise robust speech recognition. Differ-
ent model domain techniques have been proposed for Gaus-
sian Mixture Model-Hidden Markov Model (GMM-HMM)
architecture like Parallel Model Combination (PMC) [10],
Vector Taylor Series (VTS) expansion [11] and Psychoacous-
tic Model Compensation (Psy-Comp) [12, 13, 14]. But, these
techniques are incompatible with the Deep Neural Network
(DNN) based speech recognition systems. So, one alternative
is to apply these techniques in the front-end processing as
suggested in [15, 16].

In [17], we proposed a Vector Taylor Series with Audi-
tory Masking (VTS-AM), which consistently outperformed
the conventional VTS method. In this paper, we propose
further improvements in the front-end processing. We in-
vestigated the effectiveness of the root-compression [18] in-
stead of the conventional log-compression of the mel-filter
banks energy. We also propose a method of using the root-
compression in conjunction with the VTS and the VTS-AM
feature compensation. To the best of our knowledge, this has
not been attempted yet in the literature. We show that the root
compression improves the performance of both these methods
by a significant margin. To further improve the performance
in low Signal-to-Noise-Ratio (SNR) scenarios, we also em-
ploy a spectral variance based frame selection method.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes the compression techniques for front-
end processing and frame suitability measure (FSM) is dis-
cussed in Section 3. Section 4 describes the Vector Taylor
Series expansion with Auditory Masking. Section 5 describes
the estimation of enhanced features, while the overall algo-
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rithm is presented in Section 6. Section 7 and 8 deal with the
experiments and results and Section 9 concludes this paper.

2. ROOT COMPRESSION

In MFCC feature computation, use of log-compression on the
mel-filter bank energies has been the practice. The purpose
of applying logarithm is to reduce the dynamic range of the
feature and also to make data less sensitive towards variabil-
ity [19]. We can also use root compression instead of log-
arithm compression for reducing dynamic range of the mel-
filter bank features. Relation between root function and loga-
rithm function is reported in [18] as follows:

fr(x) =
xr − 1
r

(1)

If we expand the Equation 1 using Taylor series, it will be
related to logarithm function as follows:

lim
r→0

fr(x) = log x (2)

The befefit of logarithm function is that channel effect can
be discarded through cepstral mean and variance normaliza-
tion, which is not possible for root compression. Nonethe-
less, empirical evidence shows that root compression exhibits
noise robustness for ASR applications [19, 4]. The reason be-
hind improved performance, as has been justified in [19], is
that root compression may result in better compaction of the
spectral energy.

3. FRAME SUITABILITY MEASURE

Frame suitability measure (FSM) approach helps to select ap-
propriate frames for improved ASR performance. Energy
Normalized Variance has been investigated in [20] for identi-
fying noisy speech frames. Energy-normalized variance can
be defined as follows:

N V AR =
∑N

i=0(Xi − X̄)2∑N
i=0(Xi)2

(3)

where X̄ is the mean of mel-filter banks energy and N is the
total number of mel-filter banks. Values of N V AR are in
the range of 0 to 1. High values of N V AR represent speech
regions while lower values represent noise dominated regions.
After computing N V AR for all frames, we can select the
frames with high values of N V AR.

4. TAYLOR SERIES EXPANSION WITH AUDITORY
MASKING

Traditional assumption of noise corruption model is that the
speech and noise are additive in the spectral magnitude do-
main. But, according to psychoacoustic corruption model

[13], human beings perceive only the portion of noise which
is above the masking threshold of clean speech and only the
perceived noise is added to the speech. The psychoacoustic
corruption function is, as described in [12, 14], defined as:

Yf = Xf +Nf − 10
Tmf
20 (4)

where Yf is the corrupted speech signal in the mel-filter bank
domain. Xf and Nf are the clean speech and the additive
noise respectively. f denotes the mel-filter index. Tmf is the
masking threshold of the clean speech Xf . Masking thresh-
olds of clean speech is computed as follows [14]:

Tmf = 20 log10 (Xf )− 0.275.Cf − 6.025 (dB) (5)

where Cf is the central frequency of the mel-filter in bark
scale.

Considering the channel factor H in the corruption func-
tion 4, it can be written as:

Yf = HfXf +Nf − 10
Tmf
20 (6)

After re-arranging the above Equation 6, we can redefine
the corruption as follows:

Yf = WfXfHf +Nf (7)

where Hf is the channel factor and Nf is the additive noise.
Here, Wf is the weighting factor which can be expressed as
follows:

Wf =
Xf − 10

Tmf
20

Xf
(8)

Now, if we re-arrange the Equation 7 after taking log and mul-
tiplying with the discrete cosine transform (DCT) matrix, we
can get a non-linear distortion model in the cepstral domain
as:

~ys = ~xs+~hs+ ~ws+Clog(1+exp(C−1(~ns−~xs−~hs− ~ws)))
(9)

where C and C−1 is the DCT matrix and it’s inverse respec-
tively. On the other hand, ~y, ~x, ~h, ~w, and ~n are distorted
speech, clean speech, channel factor, scaling factor and addi-
tive noise respectively and all these parameters are in MFCC
domain. We can compute the compensated model parameters
following similar methods described in [11, 21].

The modified Taylor series component G which is the Ja-
cobian of the mismatch function is defined as:

G = C • diag

(
1

1 + exp(C−1( ~µn − ~µx − ~w − ~h))

)
• C−1

(10)
It is important to note that component G is derived using only
the static portion of model mean and noise mean. In the next
step, we can compensate the model mean and variance as fol-
lows:

~µy = ~µx +~h+ ~w+Clog(1 + exp(C−1( ~µn− ~µx− ~w−~h)))
(11)
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and

Σy ≈ GΣxG
T + (I − G)Σn(I − G)T (12)

where I and T are the identity matrix and transpose respec-
tively. ~µy and Σy are the compensated mean and variance.
Equations 10 and 11 are different from the traditional VTS
expansion methods, discussed in [11, 21]. Here, we have in-
troduced the weighting factor ~w, which depends on the mask-
ing threshold of clean speech.

5. ENHANCED FEATURE ESTIMATION

In the Section 4, we described the clean GMM model param-
eters compensation method using estimated noise statistics.
Here, we estimate the pseudo-clean features from noisy fea-
tures by the MMSE method as described in [16]. In this ap-
proach, we need a GMM, which is trained on clean speech
and let it be denoted as λx = {~µx, ~σx, ~w}. Next, the GMM
parameters (mean and variance) are compensated according
to Section 4. Let the compensated model be denoted as λy =
{~µy, ~σy, ~w}. The pseudo-clean features are estimated from
the noisy observations by first order VTS approximation as

~xMMSE = E(~x|~o) =
∫
~xp(~x|~o)dx

= ~o−
M−1∑
m=0

p(~o|λym)(~µy − ~µxm)
(13)

where ~o is the noisy speech features. p(~o|λym) is the posterior
probability for the mth Gaussian mixture component of the
noise compensated GMM against the observation ~o. ~o is the
noisy speech signal. The ~µym is the ~mth component of the
noise compensated model. On the other hand, ~µxm is the ~mth

component of the clean model.

6. PROPOSED METHOD

We will describe the proposed methods step by step. For this
proposed method, we need a GMM which is trained using
clean training feature.

1. Estimate initial noise statistics (noise mean and vari-
ance), ~µn and Σn using starting and ending frames.

2. Compensate GMM means and variances using Equa-
tions 11 and 12.

3. Re-estimate the additive noise ~µn and channel factor ~µh

using Expectation Maximization (EM) algorithm de-
scribed in [11].

4. Compensate clean GMM means and variances using
Equations 11 and 12 with re-estimated noise statistics.

5. Now, the pseudo-clean features are estimated from
noisy feature using Equation 13 in MFCC domain.

6. Next, we convert enhanced MFCC to mel-filter banks
energy and apply the frame selection method using
Equation 3 to eliminate noise dominated frames .

7. Then, we apply the 10th root or log-compression, ac-
cording to the experimental need.

8. The compressed mel-filter banks energy are used for
recognition in DNN architecture.

7. EXPERIMENTAL SETUP

We have conducted all the experiments on two separate
speech recognition corpora: TIMIT and Librispeech [22].
Kaldi Speech Recognition Toolkit [23] has been used for all
experiments. For acoustic model training, we used only clean
speech waveforms. To prepare test data of both databases, we
corrupted clean test waveforms with different noise types like
hfchannel (HF), F-16 and babble at various SNRs like 0dB,
5dB, 10dB and 15dB. To accomplish this task, we have used
the standard Filtering and Noise Adding Tool (FaNT) [24].

For both databases, we extracted mel-filter bank features
with logarithm and 10th root compression. We built two sep-
arate acoustic models with training data of two databases. In
case of TIMIT database, we followed standard training recipe
of Kaldi toolkit. In this recipe, CMN technique is used for
feature normalization. Moreover, only two hidden layers are
considered for DNN structure. In the other experiment for
Librispeech database, we selected approximately 30 hours of
data from the database. It consists of total 585 speakers out
of which 284 male and 301 female speakers. In this setup, we
adopted the Librispeech recipe of Kaldi toolkit. As it is large
database, we selected four hidden layers for DNN architec-
ture. In this experiment, we also built two separate language
model from the training text of the databases.

To train the clean speech GMM (128 components), we
considered 23 dimensional static MFCC features. It helped
transform the model parameters to mel-filter bank domain
without any approximation, since we are using 23 mel-
filters to compute the MFCC features. Noisy features are
compensated using VTS and the VTS-AM. After that, we
transformed the compensated feature from MFCC domain to
mel-filter bank domain. Next, we applied logarithm and 10th

root compression on the VTS compensated features and those
are called “VTS log” and “VTS root” features respectively.
Similarly, we also used both logarithm and root compression
with the VTS-AM compensated features and we denoted the
enhanced features as “VTS-AM log” and “VTS-AM root”,
respectively.

In the final step, we applied frame selection technique
on the VTS-AM root. It should discard the noise dominated
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frames to improve the ASR performance. While frame se-
lection technique has not been used with other methods, we
propose to do so in the near future.

8. RESULTS

In the baseline experiment of TIMIT database, we have
not applied any feature enhancement technique. The base-
line system with log compressed features are denoted as
“BASE log” and with the root compressed features are
denoted as “BASE root”. Phoneme Error Rate (PER) for
“BASE log” and “BASE root” are 22.7% and 22.8% re-
spectively with clean test data. Table 1 shows experimental
results for different noise robustness techniques for TIMIT
database. It can be observed that phoneme recognition per-
formance drastically degrades with the presence of different
types of noises. Experimental results shows 6% absolute
performance gain using only root-compression over the log-
compression. VTS as well as VTS-AM techniques perform
very well along with log-compression, with VTS-AM consis-
tently outperforming the VTS method. Moreover, significant
performance gain achieved after combining root-compression
with VTS and VTS-AM techniques and the performance gap
between VTS and VTS-AM narrows considerably. With root-
compression, there is very little to choose between VTS and
VTS-AM. The frame selection method helps in improving
performance for the lower SNR scenarios only, while the
the higher SNR scenarios do not benefit from it. This may
be because in higher SNR scenarios, there are fewer noise
dominated frames.

Baseline VTS VTS-AM
VTS-AM
and
FSM

SNR log root log root log root root

HF

0dB 79.6 70.0 60.5 58 59.3 58.4 57.6
5dB 64.2 56.0 56.0 48.4 49.8 48.7 48.2

10dB 47.6 42.1 41.9 40.2 40.8 40.1 40
15dB 36.3 33.7 37.3 32.9 33.1 33 33.1

F-16

0dB 89.5 77.3 67.4 62.4 64.7 62.6 62.1
5dB 78.2 65.3 56 52.1 54.3 52.2 51.8

10dB 58.5 49.9 46.9 41.9 44.2 41.9 42
15dB 42.1 38.2 37.3 35 35.3 34.9 34.8

BABBLE

0dB 82.3 75.6 71.6 67 68.7 67.6 65.9
5dB 68.3 64.0 57.4 53.5 55.8 54.4 54

10dB 52.5 50.3 46.2 43.4 44.4 43.4 43.3
15dB 40.4 39.2 38.0 35.6 36.6 35.6 35.4

Average 61.6 55.1 51.3 47.5 48.9 47.7 47.3

Table 1. Phoneme Error Rate (PER) of different techniques
with different SNR level for TIMIT

Table 2 shows experimental results of different noise ro-
bust techniques on Librispeech database. we have got 13.82%
and 14.07% Word Error Rate (WER) for “BASE log” and
“BASE root” respectively with clean test speech. We can ob-
serve that the performance of the various methods follow the
same trend as in the TIMIT experiments. It is interesting to

observe that auditory masking in Taylor series exhibits sig-
nificant improvement over traditional VTS technique for log-
compression. However, the with root-compression, both VTS
and VTS-AM perform almost at the same level. This opens
up possibilities that a more suitable formulation of auditory
masking might be beneficial for the root compressed features.
The frame selection method used in this work also indicates
that better frame selection methods might aid the performance
of the feature enhancement techniques.

Baseline VTS VTS-AM
VTS-AM
and
FSM

SNR log root log root log root root

HF

0dB 83.92 77.04 72.58 68.62 70.13 68.46 68.16
5dB 62.25 52.2 49.14 45.16 47.55 44.89 45.18
10dB 36.68 31.09 31.85 29.31 31.33 29.34 29.56
15dB 22.95 21.87 22.27 21.59 22.03 21.57 21.82

F-16

0dB 90.42 86.75 80.75 74.67 76.57 74.77 74.05
5dB 72.8 61.53 56.92 48.92 51.57 48.99 48.87
10dB 43.72 35.38 34.39 29.91 32.05 29.73 29.76
15dB 24.31 22.48 22.29 20.73 21.38 20.72 20.76

BABBLE

0dB 85.94 84.18 83.49 80.07 81.15 80.51 79.58
5dB 61.85 58.36 59 53.69 56.53 54.19 53.73
10dB 34.79 32.63 34.25 31.58 33.18 31.57 31.63
15dB 22.14 20.84 21.55 20.77 21.05 20.85 20.68

Average 53.48 48.70 47.37 43.55 45.17 43.8 43.64

Table 2. Word Error Rate (WER) of different techniques with
different SNR level for Librispeech

9. CONCLUSION

In this paper, we have proposed robust front end methods for
speech recognition in noisy conditions. We have shown that
using root compression in conjunction with VTS or VTS-AM
methods of feature enhancement can greatly improve the per-
formance. Also, employing a simple frame selection method
based on energy normalized variance can aid the performance
in low SNR scenarios. Currently, we are looking into better
frame selection methods and also a formulation of auditory
masking that might be more suitable for root compressed fea-
tures.
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