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ABSTRACT 
 
In this paper, a feature set referred to as Discrete Cosine Series 
(DCS) is proposed for noise robust Automatic Speech 
Recognition (ASR). Unlike many other robust algorithms which 
use various forms of “long term” processing, DCS uses a small 
frame spacing to facilitate separating speech from noise and also 
for other benefits. Spectral and temporal modulations are 
performed separately using only a small number of modulation 
filters. ASR experiments show the effectiveness of individual 
components of the DCS algorithm. The DCS features yield 
higher accuracy ASR for both additive noise and reverberation, 
as compared to several other advanced robust algorithms. 
 

Index Terms— Noise and reverberation robust, ASR, small 
frame spacing, discrete cosine, modulation  
 

1. INTRODUCTION 
 
For many years, numerous efforts have been devoted to 
developing signal processing based robust speech features to 
improve ASR in additive noise and reverberation. Even using 
Deep Neural Networks (DNNs) as state-of-the-art ASR 
recognizers, which, by themselves, are able to obtain learned 
patterns robust to extraneous variabilities [1,2], highly robust 
“raw” features are still crucial, because they effectively reduce 
the mismatch between clean and corrupted data. 

Various forms of “long term” processing are often used in 
noise robust front ends. For example, in the Power function-
based Power Distribution Normalization (PPDN) method [3], a 
frame length of 100 ms, rather than the typically used 25 ms is 
used to capture the slowly varying property of noise. The Long-
Term Log-Spectral Subtraction (LTLSS) [4,5] uses a window 
longer than 1 second to model the far-field Room Impulse 
Responses (RIRs) in reverberation. In addition to long term 
frames, long term Linear Prediction (LP) usually deploys 
hundreds or even thousands of LP coefficients to estimate the 
inverse filter for the RIRs, such as in [6,7]. Long term operations 
are usually computationally costly, and due to large inter-frame 
correlation, speech reconstruction is often needed before final 
feature extraction, such as in [3,8], which again adds complexity. 

Another shortcoming of many algorithms is that they 
usually have good effects for either additive noise or 
reverberation only, rather than for both, due to different 

mechanisms of corruption. Thus, one might need to first use 
algorithms dedicated to de-reverberation, such as the Blind 
Spectral Weighting (BSW) [9], Weighted Prediction Error 
(WPE) [10] etc., for a preprocessing pass, and append other 
algorithms to reduce additive noise. Again, feature extraction 
becomes multi-stage processing, which is less efficient, and also 
causes more spectral distortion for clean data. Some algorithms 
bring improvements for both scenarios. Delta-Spectral Cepstral 
Coefficients (DSCCs) [11] reduce spectral mismatch by 
computing the delta features in the spectral domain. Relative 
spectra (RASTA) [12] uses a modulation filter over the log 
spectrum to remove the slowly varying distortion, and Power-
Normalized Cepstral Coefficients (PNCCs) [13] employ 
temporal masking and spectral subtraction for reverberation and 
noise respectively. 

 In our previous work [14], we developed a modulation 
feature algorithm, which improved phoneme recognition for 
clean speech, but lacked noise robustness. The new Discrete 
Cosine Series (DCS) method proposed in this paper re-develops 
[14]. DCS extracts features that are robust to both additive noise 
and reverberation in a single pass of processing. Static and 
modulation features are computed independently from a power-
law scaled and an unscaled gammatone spectrogram 
respectively. The entire processing is based on a very small (2- 
ms) frame spacing, which improves robustness, and does not 
require speech reconstruction. DCS employs only a small 
number of 1-D modulation filters, which reduces computations. 
In this paper, we first show the individual contribution of the 
major components in DCS, and we then show that DCS 
outperforms several other widely-used noise robust methods for 
large vocabulary ASR. 
 

2. STRUCTURE OF THE DCS FRONT END 
 
2.1. Static feature extraction 
 
The left side of Figure 1 depicts the static feature extraction. 
Input speech is pre-emphasized and segmented into 25 ms 
frames. The initial frame spacing is 2 ms, instead of 10 ms which 
is typically used for ASR. The motivation is that noise is 
generally slowly varying compared with speech. To allow a 
model which separates the slowly changing nature of noise from 
the rapidly varying speech, the signal is sampled with a high 
frame rate (500 frames/sec). Thus, by observing noise and 
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speech signals every 2 ms, the relative rate of change between 
the two components is effectively “magnified.” A 512-point FFT 
is computed for each frame, generating a 256-point magnitude-
squared FFT power spectrogram. 

This FFT power spectrum is weighted by a magnitude-
squared 40-channel gammatone filterbank over the frequency 
range of 200 Hz to 8000 Hz. For each channel, the area under the 
squared transfer function is normalized to 1. The resulting 
gammatone spectrogram is mapped to a perceptual loudness 
scale by a power-law nonlinearity .ଵ. We used gammatone 
frequency integration and power-law scaling because of their 
known effects of noise robustness as reported in [12,13,15,16]. 
Next, a DCT converts the spectrogram to 13 cepstral 
coefficients. Finally, the mean and variance of each cepstrum is 
normalized by utterance-based CMVN [17]. 
 
2.2. DCS temporal and spectral modulations 
 

The modulation features consist of temporal and spectral 
modulations. These modulation features are computed over the 
original gammatone spectrogram without power-law scaling; 
otherwise, the recognition accuracy was found to severely 
degrade. We hypothesize this is because the amplitude-scaled 
power spectra of the clean speech and the noise are no longer 
additive, and they become dependent in a nonlinear way. Thus, 
it’s difficult for the modulation filters to separate the interlaced 
speech and noise by their relative rate of change. 

Both the temporal and spectral modulations take a discrete 
cosine form. The temporal modulation feature ்,    at 
the time-frequency bin (     produced by the ith temporal 
filter is computed by a one-dimensional convolution as: 

்,   ௧ 

ଵ
ଶ

ି
ଵ
ଶ

 

in which ௧   is the unscaled gammatone spectrogram for 
the channel centered at  , and the normalized range of t from -
0.5 to 0.5 denotes the length of the temporal filters, with zero 
aligned with the middle frame at . We used 4 temporal DCS 
filters, each spanning 50 frames. This is a filter length of 100 ms 
for the 2 ms frame spacing. Figure 2 (left) depicts these filters, 
with modulation frequencies 5, 10, 15 and 20 Hz respectively. 
These modulation frequencies approximately cover the range of 
the meaningful modulation frequencies of human auditory 

systems from 2 to 22 Hz as reported in [18,19]. The 1-D 
convolutions are implemented by sliding the 4 filters through the 
entire  plane along the time axis, yielding 160 (40×4) 
temporal modulation features for each frame. 

Three spectral modulation filters provided the best ASR 
performance experimentally, and thus were used in DCS. The 
spectral modulations are also computed over the original 
unscaled spectrogram . As shown in Figure 1, the spectral 
modulation is a separate block from the temporal modulation. 
This independent modulation requires only 7 (4+3) one-
dimensional convolutions in total, which is highly 
computationally efficient. In a manner similar to that used in Eq. 
(1), the jth spectral DCS filter at (     is defined by: 

ௌ,    
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in which the normalized frequency range covers 20 channels 
centered at . Figure 2 (right) depicts the spectral filters with 
modulation frequencies of 0.025, 0.05 and 0.075 cycles/channel. 

Spectral downsampling is conducted in a similar way as in 
the Gabor filterbank (GBFB) [20] to reduce the correlations 
between the spectral modulation features. The 40 spectral 
modulation terms produced by each DCS are decimated by a 
factor of 4. The feature yielded by the central channel (1722 Hz) 
is always preserved because presumably this channel contains 
the richest spectral information. Totally 30 (10×3) spectral 
modulation terms are preserved, and thus there are 190 temporal 
and spectral modulation features (160+30) for each frame. 
 
2.3. Peripheral processing and computational cost 
 
It has been observed in previous studies that Histogram 
Equalization (HEQ) improves feature robustness [21,22]. In 
addition to this motivation for using HEQ, we also observed that 
the DCS modulation features are very non-Gaussian, as shown 
in Figure 3 (left), which degrades GMM modeling for HMMs. 
Thus, we implemented sentence-based HEQ to gaussianize each 
modulation term as shown in Figure 3 (right). In Figure 4, we 
plot the overall effect of the DCS (temporal) processing versus 
the regular delta features. It can be seen that DCS reduces the 
feature mismatch between clean and corrupted data. 

Principal Component Analysis (PCA) is used to reduce the 
190 modulation features to 32 uncorrelated terms, which are then 
appended to the 13 static features. The final total dimension of 
45 features is practical for the HMMs. We used PCA because it 

Fig.1. Block diagram of the DCS algorithm. 

Fig.2. The 4 DCS temporal filters (left) and the 3 spectral filters 
(right) used in this work with modulation frequencies labelled. 
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provides good performance, and is also relatively simple to 
implement compared with other neural-network-based methods 
as in [23,24,25]. The PCA is applied only to the modulation 
features, excluding the static gammatone spectrogram, which is 
processed by a separate DCT. Incorporating the entire feature set 
into PCA was found to degrade ASR performance, which might 
be due to the power-law scaling, which was used only for the 
unmodulated spectrogram. 

 

 
Fig.3. Histogram of the 10th modulated channel by the 4th temporal 
DCS filter before (left) and after (right) HEQ. 

Note that in addition to modulations, the CMVN, HEQ and 
the PCA autocorrelation matrix are all based on a 2 ms frame 
spacing. This is because these peripheral operations benefit from 
the collection of slowly varying statistics on a fine time scale. In 
the last step, a temporal downsampling decimates the features by 
a factor of 6, resulting in a final feature spacing of 12 ms. 

DCS has relatively low computational cost compared with 
long-frame-based methods. Although more frames are created in 
the beginning, since the filterbank and modulations are linear 
operations, the 2 ms frame spacing and decimation require less 
runtime than the time expensive long frame length followed by 
speech reconstruction and another pass of feature extraction. 
DCS uses only 7 disjoint modulation filters, all implemented by 
1-D convolutions, which also makes the algorithm efficient. 
 

3. EXPERIMENTAL EVALUATION 

 
The Wall Street Journal (WSJ) SI-284 and Nov’92 (5K words) 
were used as training and testing sets respectively to obtain all 
the results reported in this section. We used the Kaldi toolkit [26] 
and the provided WSJ scripts which follow the pipeline of 
“triphone->feature splicing->LDA->MLLT->fMLLR (SAT)       
->feature splicing->LDA->DNN” as recommended in [27]. The 
last LDA was used only for whitening the features. The DNN 
had 4 hidden layers each with 1024 hyperbolic tangent neurons. 
The minibatch size was fixed at 128, and the dev93 set was used 
to schedule the learning rate according to the frame accuracy. 

The feature splicing used a 9-frame window, and the DNN 
parameters were initialized according to a normal distribution. 
The 20K word trigram language model was used in decoding. 

Table 1 lists the word accuracy of different components in 
DCS. The baseline used 39 MFCC features, including up to 2nd 
order deltas. The notation DCS-T and DCS-TS denote using only 
the temporal filters and both temporal and spectral filters 
respectively (45 features in both cases), with the numbers 2 and 
10 denoting the frame spacing. The feature spacing in DCS-TS-
10 was also 10 ms (no temporal decimation) and the modulation 
frequencies were not changed (that means the temporal filters 
spanned 10 frames, which were still 100 ms as in DCS-TS-2). 
The 39 GFCC features used the same power-law-scaled 
gammatone as in DCS, but with regular delta terms. In Table 1, 
the training data was clean. The white and babble noise were 
obtained from the NOISEX-92 database [28]. The street noise 
was recorded in a busy street, and the bar noise was recorded in 
a bar with many speakers and music. The music noise contains 
piano sounds. A random segment from the long noise recording 
was added to each test sentence scaled to different SNRs. The 
far-field RIRs (2 meters between speaker and microphone) for 
reverberation were retrieved from the REVERB CHALLENGE 
[29]. Three rooms with reverberation time T60=0.25, 0.5 and 0.7 
seconds were simulated. 

From Table 1, the power-law-gammatone considerably 
improves the log-Mel used for the MFCC features. The temporal 
modulation provides another major improvement over the delta 
terms used in GFCC. The spectral modulation is not very 
effective for musical noise and reverberation compared with its 
use for other cases. The values in the parentheses are the 
percentage error rate reductions provided by 2 ms processing, 
relative to DCS-TS-10. The small frame spacing has relatively 
significant effects for both noise and reverberation, considering 
that the DCS-TS-10 already yields strong performance. 

Table 2 shows the results for matched multi-condition 
training/testing. The training, development and evaluation sets 
were all renoised. For each sentence, a noise type was randomly 
(uniformly) selected with a SNR (or T60) also randomly chosen 
from clean, 20, 15, 10, and 5 dB (or 0.25, 0.5 and 0.7 s for T60). 
Table 2 has the same trend as observed in Table 1. Compared 
with the baseline MFCC result, the best DCS setting reduces the 
error rate by 25.9% relatively. 

Table 3 evaluates DCS (DCS-TS-2) and several other 
advanced algorithms in mismatched clean training cases, and 
Table 4 repeats the experiments for matched multi-condition 
training/testing. We used the MATLAB code in [30] and [13] for 
RASTA-PLP and PNCC respectively without modifications. For 
DSCC, we replaced the Mel filterbank in the original code [11] 
with the same gammatone filterbank as in DCS, which improves 
the original DSCC. All the optimized values for the parameters 
proposed in the original works for these methods were used. 

From these results, DCS outperforms other methods in most 
cases, except for several low SNR musical noise situations, for 
which RASTA performs better. Also, it’s not easy to obtain large 
improvements for both additive noise and reverberation, as can 
be seen in the RASTA and PNCC results. RASTA is 
substantially better than PNCC and DSCC in additive noise, but 
it’s not the case for reverberation. The temporal masking module 
in PNCC makes a large contribution to reduce reverberation, but  
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Fig.4. Gaussianized 10th gammatone channel modulated by the 4th 
temporal DCS (left) vs. regular delta over the 10th log-gammatone 
channel (right) in clean and 5 dB speech corrupted by white noise. 
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Table 1. Word accuracy (%) of the WSJ Nov’92 for mismatched training/testing using different components of DCS. 

 

Table 3. Word accuracy (%) of the WSJ Nov’92 for mismatched training/testing using different algorithms 

 

Table 2. Word accuracy (%) of the WSJ Nov’92 for matched multi-
condition training/testing using different components of DCS. 

 

Table 4. Word accuracy (%) of the WSJ Nov’92 for matched multi-
condition training/testing using different algorithms. 

 

Table 5. Word accuracy (%) of the WSJ Nov’92 in reverberation 
(clean training) using GFCC and DCS combined with SSF. 

 
 
PNCC does not approach RASTA in additive noise. DCS shows 
the best results for both noise and reverberation, with especially 
large improvements for reverberation. 

Finally, DCS can be combined with other methods. In Table 
5, the SSF algorithm in [31] was used to de-reverberate and 
resynthesize the speech, followed by DCS to extract features. In 

Table 6, the noise power normalization (PN) in PNCC was used 
to subtract the noise from the gammatone spectrogram in DCS. 
The “hybrid” DCS improves the original SSF and PNCC. 
 

4. CONCLUSIONS 
 
A noise and reverberation robust DCS algorithm was proposed 
in this work. Temporal and spectral modulations are computed 
using only a small number of DCS filters based on a small frame 
spacing, which is an effective way to reduce the effects of slowly 
varying noise typically accounted for by long term frames. 
Future work includes removing DCT and PCA from DCS to let 
DNN learn speech patterns from the original features. 

Table 6. Word accuracy (%) of the WSJ Nov’92 (clean training) 
using power normalization as in PNCC combined with DCS. 
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