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ABSTRACT

It is well known that, when noisy speech is transcribed us-

ing automatic speech recognition (ASR) systems trained on

clean data, a highly degraded recognition performance is ob-

tained. The problem gets further aggravated when the targeted

group happens to be child speakers. For children’s speech,

the acoustic correlates such as pitch and formant frequency

vary significantly with age. This makes the recognition of

children’s speech very challenging. In this paper, we have

explored the ways to enhance the noise robustness of ASR

systems for children’s speech. Towards addressing the same,

recently developed front-end acoustic features based on spec-

tral moments (SMAC) are explored. The SMAC features are

reported to be more noise robust than the conventional fea-

tures like the mel-frequency cepsatral coefficients. At the

same time, the SMAC features are also noted to be sensitive

to the variations in the pitch. To reduce the pitch sensitivity,

a spectral smoothing approach based on adaptive-liftering is

proposed. Spectral smoothening prior to the computation of

spectral moments results in a significant improvement in the

robustness to pitch without affecting the noise immunity. To

further enhance noise robustness, a foreground speech seg-

mentation and enhancement module is also included in the

proposed front-end speech parameterization technique.

Index Terms— Children’s speech recognition, spectral

smoothening, speech enhancement.

1. INTRODUCTION

The development of an automatic speech recognition (ASR)

system comprises of two major parts viz. the acoustic and the

linguistic aspects. The linguistic aspects deal with the cre-

ation of lexicon and the training of domain-specific language

model (LM). The acoustic part can further be broken down

to front-end speech parameterization and training of statis-

tical acoustic models. For the last few decades, the hidden

Markov model (HMM) has been the most widely used tech-

nique for learning the acoustic model parameters. With the

recent developments in ASR, the observation probabilities for

the states of the HMM are now being generated through the

deep neural network (DNN) [1]. The front-end speech param-

eterization, on the other hand, deals with the task of deriving

a compact representation of the raw speech. These short-time

parametric representations are also referred to as the acoustic

feature vectors. The chosen parametric representation intends

to capture the relevant information in speech signal while re-

moving the redundancies. The Mel-frequency cepstral coef-

ficients (MFCC) and the perceptual linear prediction cepstral

coefficients (PLPCC) are the two dominant examples of the

commonly used ones. Speech recognition systems developed

using the MFCC/ PLPCC features have been explored for a

large number of speech-based applications.

The recognition performance of ASR systems are affected

by a number of factors. One of the factor is the differences in

the level of ambient noise in the training and test data. Se-

vere performance degradation is noted when an ASR system

trained on clean speech is tested using noisy speech. To ad-

dress this shortcoming a noise robust front-end feature ex-

traction approach based on spectral moments was proposed

in [2]. Another factor affecting those features is the varia-

tions in the pitch of the speech signal used for training and

testing. An extreme example of pitch mismatched ASR is the

task of recognizing children’s speech using acoustic models

trained on adults’ data and vice-versa. Both the acoustic and

the linguistic correlates for children’s speech differ from that

for adults’ [3, 4, 5]. In earlier works [6, 7], several front-

end features such as the MFCCs, the linear prediction cep-

stral coefficient (LPCC), the PLPCC and the perceptual min-

imum variance distortionless response (PMVDR) were ana-

lyzed and were found to be sensitive to the variation in the

average pitch values. A number of works have been reported

to address the pitch-induced distortions [8, 9].

In this paper, we propose a front-end speech parameteriza-

tion technique that is robust to both noise and pitch variations.

To simulate the same, an ASR system is trained on speech

data collected from both adult and child speakers while test-

ing is done using clean as well as noisy speech from chil-

dren. In order to enhance the noise robustness of the devel-

oped ASR system, acoustic features based on the first central

spectral moment time-frequency distribution (also known as
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SMAC) are explored. In the work reported in [2], the SMAC

features were noted to be less affected by additive noise com-

pared to the MFCCs and PLPCCs. At the same time, these

features were noted to be sensitive to the pitch periodicity

of the signal being analyzed. Consequently, we introduce a

spectral smoothening step prior to the computation of spectral

moments for enhancing the pitch robustness. This is done via

pitch-adaptive-liftering of the cepstral coefficients [10]. In or-

der to further boost the noise robustness, a foreground speech

segmentation and enhancement module is included before the

computation of feature vectors [11]. The combination of the

two techniques is noted to significantly enhance the recogni-

tion performance of children’s speech.

The rest of this paper is organized as follows: In Section 2,

the proposed front-end speech parameterization approach is

discussed. In Section 3, we present the evaluation of the pro-

posed scheme. Finally, the paper is concluded in Section 4.

2. PROPOSED SPEECH PARAMETERIZATION

APPROACH

A front-end speech parameterization approach based on the

normalized first central Spectral Moment time-frequency

distribution Augmented by low-order Cepstral coefficients

(SMAC) was proposed recently in [2]. In that approach, the

spectral moment components were computed from the speech

spectra filtered using a set of mel-spaced Gabor filters. In-

voking the notion of pyknogram [12], it was argued that the

information about the resonances of the speech signal could

be captured by the spectral moments. The pyknogram is a

density plot of the frequencies present in the input signal. It is

to note that the pyknogram does not model the relative impor-

tance of each resonance peak. Consequently, the low-order

cepstral coefficients capturing the spectral slope were also

appended to the spectral moments to derive the final feature

vector. The experimental evaluations done under different

noise conditions showed that the use of the SMAC features

was superior to those of MFCC/RASTA-PLP features.

In practical conditions, ASR systems get exposed to not

only the ambient noise but also to speakers of varying age

and gender. The studies reported in [2] were performed on

the matched ASR task, i.e., transcribing adults’ speech using

acoustic models trained on speech from adult speakers only.

In such cases, the pitch-induced distortions are not that severe.

On the other hand, in the case of children’s mismatched ASR

systems, effective smoothing of pitch harmonics in the spectra

is required. In this paper, mismatched ASR refers the task of

decoding children’s speech on acoustic models trained either

using the adults’ speech only or by pooling speech data from

both adult as well as child speakers. As already mentioned,

a large difference exists between the pitch values for adult

and child speakers. Even among the children themselves, the

pitch variation with age of the speaker is more diverse than

that for the case of adult speakers. These differences lead to

average pitch

Compute Choose lifter

Framing and

windowing magnitudeDFT
Log−

IDFT

Low−time
DFT

window length liftering

Gabor filters

Normalized first First−two
order moments

Concatenate

features
R−SMAC

cepstral coeff.

Spectral smoothening module

Mel−spaced

Input
speech

enhancement
Speech

module

Fig. 1. Block diagram of proposed front-end speech param-

eterization approach employing foreground speech segmen-

tation and enhancement as well as adaptive-liftering-based

spectral smoothening to enhance noise and pitch robustness.

the pitch-induced distortions that severely affect the perfor-

mance of the mismatched ASR task [10]. Our experimental

exploration revealed that, like the MFCCs and PLPCCs, even

the SMAC features are sensitive to pitch-induced distortions.

To address the aforementioned issues, a novel front-end

speech parameterization approach is proposed in this paper.

The block diagram of the proposed front-end speech param-

eterization technique is shown in Fig. 1. The proposed ap-

proach consists of two extra modules added to the SMAC fea-

ture extraction process in order to enhance the noise and pitch

robustness. The resulting feature are referred to as robust

SMAC (R-SMAC) features in this work. In the following,

we discuss the adaptive-liftering-based spectral smoothening

technique explored to address the pitch-induced distortions.

This followed by a discussion on the foreground speech seg-

mentation and enhancement scheme to further boost noise ro-

bustness.

2.1. Pitch-adaptive-liftering for spectral smoothening

In order to improve the pitch robustness, the proposed speech

parameterization technique includes a spectral smoothening

module based on adaptive-liftering of cesptral coefficients be-

fore computing the spectral moments. The steps in the pro-

posed scheme are as follows: Using short-time Fourier trans-

form (STFT) analysis involving a fixed duration Hamming

window, the spectral representation of the speech signal is

obtained. Next, the log-compressed magnitude spectrum is

derived for each short-time frame of speech. This is followed

by conversion to the cepstral representation using inverse dis-

crete Fourier transform (IDFT). It is to note that the cepstral

domain representation retains the periodicity of the speech ex-

citation since the discussed steps are essentially equivalent to
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Fig. 2. Block diagram of the foreground speech segmentation

and enhancement module.

the linear filtering. Consequently, a suitable low-time lifter is

applied to smooth out the pitch harmonics. For determining

the duration of the applied low-time lifter ℓ, the average pitch

value f0 for the utterance being analyzed is computed, such

that ℓ = fs/f0 where fs is the sampling frequency. The aver-

age pitch value can be computed using any of the several ap-

proaches reported in literature viz. TEMPO [13], RAPT [14]

and WaveSurfer [15]. The liftered cepstrum is then trans-

formed back to the spectral domain using forward DFT. Given

the smoothed spectrum, the front-end features based on spec-

tral moments are derived.

2.2. Foreground speech segmentation and enhancement

In most of the speech-based applications, speech signal

recorded in the natural environment gets contaminated by

other interfering sources. The degradation of recorded speech

signal impacts the quality and hence there is a necessity to en-

hance it. However, the interfering sources are not stationary

in nature and their characteristics vary with respect to time.

The interfering background noise can temporally overlap

with the desired speech or it can be temporally isolated event

in the recorded signal. It is therefore necessary to identify

the desired foreground speech regions from rest of the back-

ground noise. Subsequently, the foreground speech regions

can be enhanced further to improve the speech quality. In our

recent work [11], a two stage approach was proposed which

segments the foreground speech from rest of the background

noise and subsequently enhances it. The block diagram of

the enhancement module is shown in Fig. 2. In this work, the

foreground speech segmentation and enhancement is used as

a front-end pre-processing module to enhance the quality of

the recorded speech signal.

3. EXPERIMENTAL EVALUATION

3.1. Experimental setup

For all the experimental evaluations reported in this study,

two different British English speech corpora namely, WSJ-

CAM0 [16] and PF-STAR [17] are used. The WSJCAM0

database consists of 15.5 hours of speech from 92 adult

male/female speakers for training. In the training set of WSJ-

CAM0 database, there are a total of 7861 utterances with

approximately 90 sentences per speaker. On the other hand,

the train set of PF-STAR contains 8.3 hours of data from

122 child speakers. The adults’ speech test set available

with WSJCAM0, consisting of 0.6 hours of speech data from

20 speakers, is used for the matched case testing. For mis-

matched testing, the test set in PF-STAR consisting of 1.1
hours of speech data from 60 child speakers is used. The chil-

dren’s speech test set consists of a total of 5067 words. All

experimental evaluations are performed for the narrowband

(sampled at 8 kHz rate) speech.

For the extraction of MFCC features, a Hamming win-

dow of length 20 ms with frame rate of 100 Hz and a pre-

emphasis factor of 0.97 is used for speech data analysis.

Using 23-channel Mel-filterbank, the 13-dimensional base

MFCC features are computed. Next, the base MFCC fea-

tures are time-spliced considering a context size of 9. This

is followed by dimensionality reduction and decorrelation of

the obtained feature vectors using linear discriminant anal-

ysis (LDA) and maximum likelihood linear transformation

(MLLT). The reduced dimensionality of the feature vector is

chosen to be 40. For the extraction of SMAC features, a frame

size of 20 ms with an overlap of 10 ms and a pre-emphasis

factor of 0.97 is considered. A 12-channel mel-spaced Ga-

bor filterbank with each filter having bandwidth of 237 mel

is employed as suggested in [2]. The derived spectral mo-

ments are appended with first two cepstral coefficients (C0,

C1) of the Gabor filtered spectra. This is followed by the

post-processing of the base features using LDA and MLLT

to yield the 40-dimensional SMAC features. Finally, the

cepstral mean and variance normalization is applied to all

studied acoustic features. In order to further improve the

performance, both the kinds of features are normalized using

the feature-space maximum likelihood linear regression (fM-

LLR). The required fMLLR transformations are generated

for the training and test data using speaker adaptive training

(SAT) approach. To optimize the fMLLR-transform, the SAT

is performed on another ASR system employing Gaussian

mixture models (GMM) for generating observation probabil-

ities for the HMM states.

In the experimental evaluations presented in [2], the

SMAC features were evaluated in the context of GMM-

HMM-based acoustic modeling. Whereas, in this work, we

use more advanced acoustic modeling framework based on

DNN. It is to note that only a few works on the children’s

ASR employing DNN-based acoustic modeling have been re-

ported [18, 19, 20]. The train set of both the aforementioned

databases is pooled for learning the statistical parameters of

the DNN-HMM-based ASR system. The ASR system devel-

opment and testing is performed using the Kaldi toolkit [21].

The hidden layers in the DNN-HMM system included the

tanh nonlinearity. The number of layers and number of

hidden nodes per layer are selected to be 8 and 1024, re-
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Table 1. WERs of the proposed R-SMAC features in contrast

to other existing features for children’s speech test set under

varying additive noise conditions. The performance evalua-

tion is done separately on two ASR systems, one developed

using only adults’ speech training data from WSJCAM0 and

the other when children’s speech training data from PFSTAR

is also pooled in.

Training Noise SNR WER in %

Speech Type (dB) MFCC SMAC R-SMAC

Adult

Clean 24.25 24.19 22.58

White
5 88.65 79.41 73.68

10 75.85 70.13 65.92

Babble
5 93.74 90.22 85.31

10 74.90 70.02 67.30

Adult

Clean 14.63 13.47 12.32

+
White

5 49.75 45.66 43.34

Child

10 32.73 29.53 26.63

Babble
5 59.19 51.60 47.84

10 37.27 32.53 29.93

spectively. The soft-max function is used as the output layer.

An initial learning rate of 0.015 is selected which is reduced

to 0.002 in 20 epochs. The minibatch size for neural net

training is selected to be 512. The 40-dimensional fMLLR-

normalized features are further spliced in time with context

size of 9 prior to learning the DNN parameters. For evaluat-

ing the recognition performances, the word error rate (WER)

metric is used. While decoding the children’s test set, a 1.5k

bigram language model (LM), trained on the transcripts of the

speech data in PF-STAR excluding the test set is employed.

The employed LM has an out of vocabulary (OOV) rate of

1.20% and perplexity of 95.8 for the children’s test set, re-

spectively. Further, a lexicon of 1, 969 words including the

pronunciation variations is employed. For decoding adults’

test set, the standard MIT-Lincoln 5k Wall Street Journal bi-

gram LM is used. This LM has a perplexity of 95.3 for the

adults’ test set while there are no OOV words.

3.2. Results and discussions

The WERs for the children’s test set on the ASR system de-

veloped using the mix of adults’ and children’s speech under

clean test conditions are given in Table 1. For the sake of con-

trast, the WERs for the case when only adults’ speech is used

for learning the model parameters are also given in Table 1.

It is evident that the R-SMAC features have resulted in im-

proved WERs than the other two existing features explored.

The WERs for the adults’ test set on the two kinds of ASR

systems employing MFCC features happen to be 6.20% and

12.93%, respectively. For the proposed features, on the other

hand, the respective WERs turn out to be 6.30% and 12.54%.

It is to note that the proposed adaptive-liftering does not re-

sult in any noticeable degradation in the recognition perfor-

mances. Moreover, the pooling of children’s speech data into

Table 2. WERs depicting the effect of including speech en-

hancement module prior to the computation of acoustic fea-

ture vectors.

Noise SNR Noisy Enhanced

Type (dB) MFCC R-SMAC MFCC R-SMAC

White
5 49.75 43.34 42.61 40.67

10 32.73 26.63 29.37 25.93

Babble
5 59.19 47.84 55.14 45.24

10 37.27 29.93 34.23 29.19

training leads to a degradation in the recognition performance

for the adults’ test set.

To further validate our claims, noise robustness of the ex-

isting as well as the proposed acoustic features is also studied

in this paper. Two different noises, viz. babble noise and

white noise extracted from NOISEX-92 [22], were added to

the test data under varying levels. The noisy test sets were

then decoded on the acoustic models trained on clean speech.

The WERs for this study in the case of children’s mismatched

testing, for two signal-to-noise (SNR) values, are also given

in Table 1. It is to note that, the use SMAC features is found

to be more robust to additive noise than that of the MFCC fea-

tures. Furthermore, the proposed R-SMAC features are found

to be superior to the other two features due to enhanced pitch

robustness while retaining the immunity to noise. This ob-

servation is consistent across the two kinds of ASR systems

developed in this work.

The inclusion of foreground speech segmentation and en-

hancement module leads to further reduction in WERs for

both MFCC and proposed features. The WERs for this study

with respect to the ASR system trained on the mix of adults’

and children’s speech are given in Table 2. Large reductions

in WERs observed in the case of MFCC features than those

for the R-SMAC features are attributed to the inherent noise

robustness of the later ones. Yet the observed changes are

significant for the low SNR cases. At the same time, the in-

clusion of speech enhancement module does not degrade the

recognition performance for the high SNR cases.

4. CONCLUSION

This work explores the combination of a number of front-end

signal processing techniques towards achieving robust recog-

nition of children’s speech. The proposed acoustic features

are observed to enhance the pitch-robustness of the existing

SMAC features. At the same time, the immunity towards ad-

ditive noises is largely retained. To further improve the noise

robustness, an earlier developed foreground speech segmen-

tation and enhancement approach is also incorporated prior

to feature extraction. The effectiveness of the proposed front-

end speech parameterization approach has been verified on

an ASR system developed using DNN-HMM-based acoustic

modeling technique.
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