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ABSTRACT 

Speech recognition in varying background conditions is a 

challenging problem. Acoustic condition mismatch between 

training and evaluation data can significantly reduce recognition 

performance. For mismatched conditions, data-adaptation 

techniques are typically found to be useful, as they expose the 

acoustic model to the new data condition(s). Supervised adaptation 

techniques usually provide substantial performance improvement, 

but such gain is contingent on having labeled or transcribed data, 

which is often unavailable. The alternative is unsupervised 

adaptation, where feature-transform methods and model-adaptation 

techniques are typically explored. This work investigates robust 

features, feature-space maximum likelihood linear regression 

(fMLLR) transform, and deep convolutional nets to address the 

problem of unseen channel and noise conditions. In addition, the 

work investigates bottleneck (BN) features extracted from deep 

autoencoder (DAE) networks trained by using acoustic features 

extracted from the speech signal. We demonstrate that such 

representations not only produce robust systems but also that they 

can be used to perform data selection for unsupervised model 

adaptation. Our results indicate that the techniques presented in 

this paper significantly improve performance of speech recognition 

systems in unseen channel and noise conditions. 
 

Index Terms— automatic speech recognition, unsupervised 

adaptation, channel- and noise-robust speech recognition, auto-

encoders, bottleneck features. 

1. INTRODUCTION 

Deep neural network (DNN) hidden Markov models (HMM) [1]-

based automatic speech recognition (ASR) systems [2, 3] 

demonstrate impressive performance as long as the training and 

evaluation conditions are similar. Unfortunately, DNN-HMM 

systems are both data hungry and data sensitive [4]. DNN acoustic 

models can be quite sensitive to acoustic condition mismatch, 

where a subtle change in the background acoustic conditions due to 

noise, reverberation, and channel distortion can expose such 

models’ weakness. Typically, multi-condition training supported 

by data augmentation is used to compensate for DNN acoustic 

model weakness, with the literature reporting that robust DNN 

acoustic models can be trained with thousands of hours of acoustic 

data collected from diverse sources [5]. Data augmentation [6, 7] is 

also found to have a significant impact. In all such conditions, the 

assumption is that we have a priori knowledge about the kind of 

distortion the model will see, which often may not be the case.  

Real-world ASR applications typically encounter diverse acoustic 

conditions, which often are unique and hence difficult to 

anticipate. One such condition is channel variation and noise, 

which practically is an open-set problem.  

The recent MGB [8], CHiME-3 [9], and ASpIRE [10] Challen- 

ges showed how susceptible DNN-HMM acoustic models are to 

realistic, varying, and unseen acoustic conditions. Several studies 

have explored novel ways of performing unsupervised adaptation 

of DNN models. Unsupervised speaker adaptation of DNNs has 

been explored with much success in [11–13], where adaptation 

based on maximum likelihood linear regression (MLLR) 

transforms, i-vectors, etc. has shown impressive performance gains 

over un-adapted models. In [4], stacked bottleneck (SBN) neural 

network architecture was proposed to cope with limited data from 

a target domain, where the SBN net was used as a feature 

extractor. The SBN system was used to cope with unseen 

languages in [4] and, in [7], was extended to cope with unseen 

reverberation conditions. In [14], Kullback-Leibler divergence 

(KLD) regularization was proposed for DNN model parameter 

adaptation, which differs from the typically used L2 regularization 

[15] in the sense that it constrains the model parameters themselves 

rather than the output probabilities.  

In this work, we focus on learning a feature-space representation 

by using deep autoencoder bottlenecks (DAE-BN), and employing 

that representation to predict the reliability of our acoustic model’s 

decision. Unlike the SBN systems explored in the literature [4, 7], 

DAE-BN training requires no labeled/transcribed data and can be 

instead done with high volumes of unlabeled speech data. DAE-

BNs take spliced (contextualized) acoustic features as input and 

then map that input to a differently spliced version of the same 

acoustic feature. In addition to DAE-BNs, we explored traditional 

fMLLR transforms and observed impressive performance gains for 

unseen channel and acoustic conditions. We investigated using the 

entropy measures from the DAE-BN features to generate a 

confidence measure, which in turn was employed to select test data 

and their initial ASR hypothesis for unsupervised model 

adaptation. Using fMLLR features in addition to model adaptation 

resulted in significant performance improvement. 

2. DATA 

The speech dataset used in our experiments was collected by the 

Linguistic Data Consortium (LDC) under DARPA’s RATS 

program, which focused on speech in noisy or heavily distorted 

channels in two languages: Levantine Arabic (LAR) and Farsi. The 

data was collected by retransmitting telephone speech (denoted as 

source channel) through eight communication channels [16] 

(denoted as A, B, C, D, E, F, G, and H), each of which had a range 

of associated distortions. The DARPA RATS dataset is unique in 

that the noise and channel degradations were not artificially 

introduced by performing mathematical operations on the clean 

speech signal; instead, the signals were rebroadcast through 

channel- and noise-degraded ambience and then rerecorded. 

Consequently, the data contained several unusual artifacts, such as 

nonlinearity, frequency shifts, modulated noise, and intermittent 

bursts—conditions under which the traditional noise-robust 
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approaches developed in the context of additive noise may not 

have performed well. 

For this paper, we focused only on the LAR dataset for our 

reported experiments. For LAR acoustic model (AM) training, we 

used approximately 250 hours of retransmitted conversational 

speech (LDC2011E111 and LDC2011E93). For language model 

(LM) training, we used various sources: 1.3M words from the 

LDC’s EARS (Effective, Affordable, Reusable Speech-to-Text) 

data collection (LDC2006S29, LDC2006T07); 437K words from 

Levantine Fisher (LDC2011E111 and LDC2011E93); 53K words 

from the RATS data collection (LDC2011E111); 342K words from 

the GALE (Global Autonomous Language Exploitation) Levantine 

broadcast shows (LDC2012E79); and 942K words from web data 

in dialectal Arabic (LDC2010E17). We used a held-out set for LM 

tuning, which was selected from the Fisher data collection and 

contained approximately 46K words. To evaluate ASR and 

keyword-spotting (KWS) performance for LAR, we used two test 

sets—referred to here as dev-1 and dev-2. Each test set consisted 

of 10 hrs of held-out conversational speech. Dev-2 did not come 

with reference transcriptions and was meant solely for KWS 

evaluation and as we focus only on ASR, we will be reporting our 

results on dev-1 only. Note that approximately 2K segments from 

each channel condition were used as a held-out validation set for 

model training and optimization. 

The LAR data had eight channels denoted by A through H. In 

our experiments, we removed channels A and B from the training 

set (referred to here as “no A-B train”) and evaluated the models 

across all eight channels as well as the source data (non-

retransmitted data) that were distributed as the dev-1 set in the 

DARPA RATS distributions. In addition to the LAR data, 2500 hrs 

of communication-channel-degraded Mandarin data was also used 

to train the DAE-BN system. We observed that the performance of 

the DAE-BN system improved with addition of the Mandarin 

training data. 

3. ACOUSTIC FEATURES 

We used gammatone filterbank energies (GFBs) as one of the 

acoustic features for our experiments. Gammatone filters are a 

linear approximation of the auditory filterbank found in the human 

ear. For the GFB processing, the speech was analyzed by using a 

bank of 40 gammatone filters equally spaced on the equivalent 

rectangular bandwidth (ERB) scale. Within an analysis window of 

approximately 26 ms, the power of the bandlimited time signals 

was computed at a frame rate of 10 ms. The subband powers were 

then root-compressed by using the 15th root, and the resulting 40-

dimensional feature vector was used as the GFBs. 

We also used normalized modulation coefficients (NMCs) [20] 

as a candidate feature in our experiments. NMCs capture the 

amplitude modulation (AM) information from bandlimited speech 

signals. NMCs track the AM trajectories of subband speech signals 

in a time domain by using a Hamming window of 26 ms with a 

frame rate of 10 ms. The powers of the AM signals were root 

compressed by using the 15th root. The resulting 40-dimensional 

feature vector was used as the NMC feature in our experiments 

In addition to the above feature sets, we also used standard mel-

filterbank energies (MFBs) and mel-frequency cepstral coefficients 

(MFCCs) as candidate feature sets. 

4. DEEP AUTOENCODER BOTTLENECK (DAE-BN) 

SYSTEM 

The DAE-BN system is a five-hidden-layer, fully connected DNN 

system, with the third hidden layer containing a bottleneck of 

eighty neurons. The remaining hidden layers had 1024 neurons. 

The hidden layers had sigmoid activations, whereas the output 

layer had linear activation. The DAE-BN was trained by using 

mean squared error (MSE) backpropagation. The input to the 

DAE-BN system was 40 GFBs with a splicing of 11, resulting in 

440 dimensional features, whereas the output was the same 40 

GFBs but with a splicing of five. 
 

 
Figure 1: The DAE-BN system. 

 

Once trained, the sigmoid activation of the BN layer was 

replaced by a linear activation. The BN feature from the DAE-BN 

system was then used to train a fully connected DNN acoustic 

model, as shown in Figure 2. Note that the DAE-BN system was 

trained with all but channels A and B, for “no A-B train” data. The 

BN features from the DAE-BN system described in this work are 

different than the previously proposed deep BN features from 

stacked autoencoders [24], in the sense that the autoencoder was 

neither trained to denoise the input features nor trained layer-wise. 

The DAE-BN system was trained with the same input-output 

features, but the feature splicing on the input side was different 

than that of the output side, as mentioned above. 
 

 
Figure 2: The DAE-BN-based DNN acoustic model training. 

 
Figure 3: The DAE-BN features (the first 20 dimensions) for a 

source [top] and unseen retransmitted [bottom] LAR data. The 

DAE-BN dimensions are found on the Y-axis, and number of 

frames, on the X-axis. 
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Figure 3 shows the plot of first 20 dimensions of the DAE-BN 

features for source (relatively clean) and unseen (channel A) 

retransmitted LAR data. It is evident that for the unseen condition, 

several of the neurons in the BN layer are triggered, and 

consequently, the entropy of the BN activation outputs over a 

short-term window can be expected to be higher for the unseen 

case compared to the seen case. This observation motivated us to 

generate an entropy-based confidence measure, which is estimated 

from the BN features and can be used to select test data and their 

first-pass hypothesis for unsupervised model adaptation. 

5. THE SPEECH RECOGNITION SYSTEM 

We used the no A-B train data to train the multi-channel acoustic 

models, and we call the resulting models the “no-AB models”. We 

also trained a baseline model using all the training data, which 

included data from the source and their eight retransmitted channel 

versions. Initially, we trained a three-state context dependent (CD) 

left-to-right GMM-HMM acoustic model, which was used to 

generate the senone alignments for the DNN acoustic model 

training. The training corpus was clustered into pseudo-speaker 

clusters by using unsupervised agglomerative clustering.  

The DNNs were trained by using cross entropy employing the 

senone alignments. The DNNs had five hidden layers of size 2048 

with sigmoid activations, except for the DNN trained on the BN 

features from the DAE-BN system, which had three hidden layers 

with 2048 neurons. The networks were trained by using an initial 

four iterations with a constant learning rate of 0.008, followed by 

learning-rate halving based on cross-validation error decrease. 

Training stopped when no further significant reduction in cross-

validation error was noted or when cross-validation error started to 

increase. Backpropagation was performed using stochastic gradient 

descent with a mini-batch of 256 training examples.  

6. RESULTS 

We trained different DNN acoustic models using MFCC, MFB, 

and NMC features. We report system performance in terms of 

word error rates (WERs). To assess the performance degradation 

due to unseen channel conditions, we trained two DNN acoustic 

models: (a) including the target channels (A, B) in the training 

data, (b) excluding the target channels (A, B) from the training 

data. Table 1 shows the WERs from these two systems when 

channels A, B, C and E are decoded from the dev-1 evaluation set. 
 

Table 1. WERs from DNN models trained with MFB features, for 

dev-1 channels A, B, C, E and the whole dev-1 data, for acoustic 

models trained with (a) all and (b) no A, B training data. 

 

Table 1 demonstrates the performance deterioration for the 

unseen channels, where the DNN models gave error rates more 

than 90%. The Table 1 results indicate the need for better strategies 

to prevent acoustic models from failing under unseen 

noise/channel conditions. Note that the error rates reported in 

Table 1 are quite high, as Arabic acoustic models typically have 

higher WERs, and beyond that, channels A, B, C, and E are known 

to be quite adverse channels that contain high levels of noise, 

channel degradations, and non-stationary artifacts. To obtain some 

insight regarding the typical WERs seen with the DARPA RATS 

Levantine Arabic corpus, one may refer to [22]. 

Next, we explored different features and investigated how the 

recognition rates varied for them for different channel conditions. 

Table 2 presents the WERs for the MFCC, MFB, and NMC 

features, when used with a five-hidden-layer DNN having 2048 

neurons. Table 2 shows that the robust features failed to prevent 

the DNNs from failing under mismatched channel conditions, 

indicating the need for adaptation mechanisms to attain reasonable 

recognition accuracy.  
 

Table 2. WERs from DNN model trained with GFB, MFB, NMC, 

and DAE-BN features for dev-1 channels A, B, C, and E, when 

trained with (a) all and (b) no A-B train data. 

N
o

 A
-B

  
tr

ai
n
 Feature dev-1 channels dev-1 all 

 A B C E Avg. 

MFCC 100 98.5 81.6 83.6 78.8 

MFB 99.5 98.0 78.2 73.4 72.6 

NMC 92.9 93.9 76.6 73.0 70.6 

DAE-BN 79.3 82.6 80.6 78.5 71.5 
 

Table 2 shows that the MFCC and MFB features failed for the 

unseen channel conditions; however, they were able to retain their 

performance for the seen channel conditions (comparing their 

performance from “All-trained” models in Table 1). The DAE-BN 

features were relatively robust for unseen channel conditions; 

however, their performance for the seen channel conditions was 

worse than that of the MFB and NMC features. Next, we explored 

using MFCC and MFB features and their fMLLR-transformed 

representations for training and testing the DNNs. Table 3 presents 

the WERs for the MFCC and MFB features, and shows that 

fMLLR transform resulted in a significant performance 

improvement.  
 

Table 3. WERs from DNN models trained with MFCC, MFB, and 

NMC features with fMLLR transform, for dev-1 channels A, B, C, 

E, and dev-1 all, for no A-B train data. 

 Dev-1 channels dev-1 all 

 A B C E Avg. 

MFCCfmLLR 75.9 80.6 76.7 73.8 67.1 

MFBfMLLR 75.7 79.1 75.3 69.8 65.4 

NMCfMLLR 76.4 79.6 75.2 70.7 65.7 
 

Table 3 shows that the fMLLR transform significantly reduced 

the error rates for the unseen channels A and B, and brought them 

close to the error rates obtained from the seen-channel conditions 

reported in Table 1. It is also interesting to note that the fMLLR 

transformed MFB features gave lower WER than the fMLLR 

transformed MFCC features. 

It has been established that convolutional neural network 

(CNN) are typically robust against noise and channel distortions 

[23]; therefore, we explored CNN acoustic models for the features 

presented above. We explored using CNN models on fMLLR 

transformed MFB, NMC, and DAE-BN features. Note that 

convolution across feature dimension is not meaningful for DAE-

BN features, as the neighboring feature dimensions may not be as 

correlated as the spectral features. Hence, we performed 

convolution across time (time-convolutional neural net (TCNN)) 

only and used 75 filters with a band size of 8 and max-pooling 

over a window size of 5. For the other spectral features, NMC and 

MFBs, we investigated conventional CNNs that had 200 

 dev-1 channels dev-1 

 A B C E Avg. 

Train with all 70.6 68.2 75.8 70.2 62.8 

no A, B train 99.5 98.0 78.2 73.4 72.6 
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convolutional filters with a band size of 8 and max-pooling over 

three frames. The convolutional layers were connected with a four-

hidden-layer, fully connected neural net, where each layer had 

2048 neurons. The results from the CNN models are shown in 

Table 4, where it can be seen that for all features, except DAE-BN, 

further reduction in WER was observed for both seen and unseen 

channel conditions compared to the DNN models. 
 

Table 4. WERs from CNN models trained with fMLLR 

transformed MFB, NMC, and DAE-BN features for dev-1 

channels A, B, C, E, and dev-1 all, for the no A-B train condition. 

 

Table 4 shows that the CNN models gave lower WERs than the 

DNN models reported in Table 3. The convolution operation on 

the DAE-BN features did not reduce WERs as compared to the 

DNN model. 

We also investigated bottleneck features (BN) features 

obtained by supervised training of a five-hidden-layer, fully 

connected DNN, which had a 60-dimensional BN at the third layer. 

The input to the BN-DNN had features spliced over 15 frames. We 

observed that SBNs learned from the LAR data using a vowelized 

dictionary gave better performance than one using the standard 

non-vowelized dictionary; hence, the former was used to train the 

BN-DNN model. The DAE-BN system also had a similar 

configuration as the BN-DNN system: five hidden layers with a 

BN at the third layer. We noticed that the BN features from the 

BN-DNN system performed slightly worse (0.4% relative) for the 

unseen channel conditions and a little better for the seen channel 

conditions, compared to the features from the DAE-BN system. 

Next, we investigated time-frequency CNNs (TFCNNs) [25] 

on fMLLR transformed NMC and MFB features. TFCNNs have 

always shown better performance than their CNN counterparts, 

and here we also observed WER reduction compared to using 

CNN acoustic models. Table 5 shows the WERs from the TFCNN 

acoustic models. In addition we combined the fMLLR transformed 

MFB and NMC features and trained a fused CNN model (fCNN) 

[26], where two parallel convolutional layers are trained for each 

of the two individual features. 
 

Table 5. WERs from TFCNN models trained with MFBfMLLR and 

NMCfMLLR features and fCNN model trained with the MFBfMLLR 

+NMCfMLLR features for dev-1 channels A, B, C, E, and dev-1 all, 

for the no A-B train condition. 

 dev-1 channels dev-1 

 A B C E Avg. 

MFBfMLLR 72.4 76.0 73.9 66.7 62.8 

NMCfMLLR 73.6 77.0 75.0 67.3 63.4 

MFBfMLLR+NMCfMLLR 72.0 75.3 73.3 65.7 61.9 
 

Next, we investigated the BN features from the DAE-BN 

network and used these to generate a confidence measure. We 

estimated the entropy over a running window of 21 frames (i.e., 

~230 ms of temporal information) of data for each dimension of 

the DAE-BN features and then computed the maximum entropy 

for each dimension. The cumulative entropy from the top 30% 

percentile maximum entropies across all the dimensions was used 

as a measure of confidence.  Note that as depicted in Figure 3, 

unseen data typically resulted in more spurious activations across 

the neurons, which resulted in higher entropy compared to seen 

data conditions. We used the entropy-based confidence measure to 

select the top 1K test segments for each channel condition that 

generated the lowest overall 30th percentile cumulative entropy for 

each channel condition and used those test segments to adapt the 

acoustic model. These test segments were used to retrain the 

previously trained TFCNN and fCNN models, using an L2 

regularization of 0.02. Table 6 presents the WERs obtained from 

the TFCNN and fCNN model adaptation for the MFBfMLLR, 

NMCfMLLR and MFBfMLLR+NMCfMLLR features. The same 

retraining procedure on the DAE-BN DNN system resulted in a 

relative WER reduction of 4.3%. 
 

Table 6. WERs from adapted TFCNN models trained with 

MFBfMLLR and NMCfMLLR features and fCNN model trained with 

MFBfMLLR+NMCfMLLR feature for dev-1 channels A, B, C, E. 

and dev-1 all, for the no A-B train condition. 

 dev-1 channels dev-1 

 A B C E Avg. 

MFBfMLLR 71.4 75.3 73.9 66.2 62.5 

NMCfMLLR 73.0 76.1 74.2 67.2 63.1 

MFBfMLLR+NMCfMLLR 71.2 74.6 73.1 65.2 61.4 

7. CONCLUSION 

In this work, we investigated techniques to cope with unseen and 

noisy channel conditions for a Levantine Arabic ASR task. We 

observed that fMLLR transform on spectral features demonstrated 

significant robustness compared to the basic features (no fMLLR 

transform) and DNN acoustic models. We proposed a novel way to 

extract a confidence measure by tracking the activations from a 

deep autoencoder bottleneck system and demonstrated that a 

running-window entropy measure can provide reliable information 

for data selection and hence unsupervised model adaptation. 

Overall, 20% relative reduction in WER was obtained when 

fMLLR transform was used, 4% relative reduction in WER was 

obtained when a TFCNN model was used to replace the DNN, and 

2% relative reduction was obtained when model adaptation was 

performed through confidence-based data selection. Combining the 

fMLLR transformed features was found to be useful which helped 

in reducing the WERs. 

In the future, we plan to investigate threshold-based data 

selection, where such thresholds are learned by tracking the 

activation entropy measured from the training data. Additionally, 

we will investigate system combination through decision fusion. 

The BN features from the DAE-BN system by themselves 

performed better than out-of-the-box MFB and NMC features for 

unseen channel conditions; however, their fMLLR-transformed 

versions failed to perform competitively. We plan to investigate if 

adding more training data further improves DAE-BN feature 

performance. Also, we will investigate if adapting the acoustic 

model after DAE-BN adaptation improves the performance of the 

proposed system. 
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 model dev-1 channels dev-1 

  A B C E Avg. 

MFBfMLLR CNN 72.8 76.4 73.8 67.2 63.1 
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DAE-BNfMLLR TCNN 80.5 83.7 81.2 79.1 72.5 
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