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Studentská 2, 461 17 Liberec, Czech Republic.

jiri.malek@tul.cz

ABSTRACT
This paper addresses the task of Automatic Speech Recognition
(ASR) with music in the background, where the accuracy of recog-
nition may deteriorate significantly. To improve the robustness of
ASR in this task, e.g. for broadcast news transcription or subtitles
creation, we adopt two approaches: 1) multi-condition training of
the acoustic models and 2) denoising autoencoders followed by
acoustic model training on the preprocessed data. In the latter case,
two types of autoencoders are considered: the fully connected and
the convolutional network.

Presented experimental results show that all the investigated
techniques are able to improve the recognition of speech distorted
by music significantly. For example, in the case of artificial mixtures
of speech and electronic music (low Signal-to-Noise Ratio (SNR)
of 0 dB), we achieved absolute improvement of accuracy by 35.8%.
For real-world broadcast news and a high SNR (about 10 dB), we
achieved improvement by 2.4%. The important advantage of the
studied approaches is that they do not deteriorate the accuracy in
scenarios with clean speech (the decrease is about 1%).

Index Terms— Robust recognition, background music, feature
enhancement, denoising autoencoder, multi-condition training.

1. INTRODUCTION

Nowadays, the research in automatic speech recognition (ASR) is
focused on robustness of the performance with respect to difficult
environmental conditions. These include, e.g., distant microphones,
concurrent speech or background interference. In some applications,
such as online 24/7 monitoring of broadcast media, one of the most
often encountered background interferences is music.

Two basic approaches exist which introduce the robustness to
background interference into ASR. The first approach consists in uti-
lization of the multi-condition training of the acoustic models. Here,
the distorted speech signals are included in the training set, i.e., the
model incorporates knowledge on the possible interference. The dis-
advantage here is the difficulty of including all possible noise types
in the training data, which are later encountered within test environ-
ments [1]. Considering environmental noise, this approach was re-
ported to obtain high performance in [2]. Besides additive noise, this
technique was demonstrated to be beneficial for reverberated speech
in [3, 4].

The other approach is to perform input speech (or feature) pre-
processing, in order to separate the speech from the interference.
The ASR is performed on the enhanced signal / features. An ef-
ficient speech separation can be achieved using denoising autoen-
coders, such as those proposed for environmental noises in [5]. The
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benefits of autoencoders for ASR was shown in [6]. Here, the car
and factory noises were considered. The performance of multichan-
nel autoencoders was demonstrated on the Chime-2 challenge [7]
datasets in [8].

The front-end preprocessing usually introduces distortions into
enhanced data, which are not observed by the acoustic model trained
on the clean data. To mitigate, the enhancement is usually applied
on both training and test data and a new acoustic model is trained on
the enhanced dataset. This is shown for environmental noises, e.g.,
in [9].

When comparing the two above-mentioned approaches, some
studies get superior results using front-end denoising [10], while oth-
ers favor the multi-condition training [2].

Focusing specifically on separation of background music, Non-
negative Matrix Factorization (NMF, [11, 12, 13]) is often utilized. A
direct application to robust ASR was proposed in [14], introducing a
probabilistic approach based on a catalog of prepared music samples.
The utilization of autoencoders for music-robust ASR was proposed
in [15]. That paper compares utilization of the fully connected and
convolutional networks. It demonstrates that the autoencoder is ca-
pable of learning features to discriminate between music and speech.
Moreover, the method is shown to be largely language-independent.

Relation to prior work: The above mentioned techniques are
usually employed in the context of environmental background noise.
In this paper, we specifically focus on background music. We extend
the analysis of the denoising autoencoders from [15] and compare
the autoencoders directly to multi-condition training [2]. We aim to
determine more suitable approach for music-robust ASR. Compared
to [15], where autoencoders were trained for a specific musical piece,
we train more general models using broad range of artificial mix-
tures of speech and various music. Considered genres range from
classical music to electronic tunes. We study the robustness of the
models with respect to unseen test conditions (varied music genres
and energy of background music) and confirm the functionality on
real-world radio broadcast shows.

2. PROBLEM FORMULATION AND DATA DESCRIPTION

We focus on robustness of ASR to music present in the background
of the speech. All of the considered training data are generated arti-
ficially, by summation of the speech and music signal. We analyze
different scenarios, with respect to average Signal-to-Noise Ratio
(SNR) and the included music genres.

We consider a Large Vocabulary Continuous Speech Recogni-
tion (LVCSR) task. Due to the data most readily available to us, we
focus on Czech language, without any loss of generality to the in-
vestigated problems. Our training set consists of 132 hours of Czech
speech.
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Table 1. Setup of the training set for multi-style acoustic models and respective autoencoders
Dataset (genre) N SNR levels Music styles included

Piano 1 3 clean, 10, 5, 0 Classical piano
Piano 2 7 clean, 10, 5, 0,−5,−10,−15,−20 Classical piano

Electronic 3 clean, 10, 5, 0 Ambient, dance, down-tempo, chillout or idm

Table 2. Setup of the artificially generated test sets
Dataset (genre) SNR levels Music styles included

Clean clean None
Test:Piano 10, 0,−10,−20 Classical piano
Test:Violin 10, 0,−10,−20 Piano and violin compositions
Test:Electro 10, 5, 0,−5 Ambient, dance, down-tempo, chillout or idm

The music we utilize in generation of the training dataset
originates in a database of free music tracks at the Free Music
Archive [16]. We use the Piano tracks (duration 33 minutes) and a
broad set of Electronic music (667 minutes). The latter set consists
of genres such as ambient, dance, down-tempo, chillout or idm. The
piano music provides the easier scenario; the music covers partly
different frequency bands than the speech, with only a single instru-
ment present. The mixtures are intelligible even for very low SNR.
As a more difficult scenario, we select the electronic music, because
it resembles the background music of the TV shows.

3. PROPOSED ROBUSTNESS-INTRODUCING
TECHNIQUES

We consider two techniques: 1) the multi-condition training of the
acoustic model; and 2) the removal of background music using a
denoising autoencoder and subsequent acoustic model training on
the processed data. We consider two types of autoencoders: a fully
connected and the convolutional network.

The configuration of hyper-parameters for all acoustic models
corresponds to the best performance in preliminary experiments with
undistorted data. The configuration for autoencoders was selected
based on preliminary experiments with a fully connected network
on dataset Piano 1 (see Table 1).

3.1. General acoustic model structure

Apart from the training data, the acoustic models for both ap-
proaches are similar, based on Hidden Markov Model - Deep Neural
Network (HMM-DNN) hybrid architecture [17]. The underlying
Gaussian Mixture Model is trained as context dependent, speaker
independent and contains 2219 physical states.

For feature extraction, filter bank coefficients [18] are computed
using 25 ms frames of signal with frame shifts of 10 ms. To nor-
malize the features, Cepstral Mean Subtraction ([19], CMS) with a
floating window of 1 s is employed. The input for DNN consists
of 11 consecutive feature vectors, 5 preceding and 5 following the
current frame.

The Torch library [20] is used for the DNN training, which has
a fixed duration of 20 epochs. The networks are fully connected
and have feed-forward structure with 5 hidden layers. The activation
function is ReLU . Each hidden layer consists of 768 units. The
mini-batch size is 1024 input vectors and the learning rate is 0.08.

As our baseline model, we consider a single-style acoustic
model, trained on an undistorted instance of the training dataset.

3.2. Multi-condition training of acoustic model

To train the multi-condition model, we prepare each dataset in the
following way. We select N desired SNR levels (details are provided
in Table 1). Subsequently, we split the speech corpus into N + 1
parts. The first part is left undistorted. To all other parts we add
corresponding music, scaled to the predefined average SNR level.
The average SNR is computed per one file of speech recordings,
which usually corresponds to about two sentences ( about 20 words).

We study three different multi-style models, based on Piano and
Electronic music in the background of the training speech; details
are provided in Table 1. The two piano-based training sets differ
in energy levels of the noise; we aim to study influence of unseen
noise-intensity conditions. In the experiments, we will denote the
multi-condition models by notation MC:Train set, e.g., MC:Piano 1.

3.3. Fully connected feed-forward denoising autoencoder

Our fully connected denoising autoencoder is a feed-forward deep
neural network, where all neurons in the lower hidden layer are con-
nected to all neurons in the higher layer. It accepts distorted fea-
tures at its input layer. The output is an estimate of clean speech
features. During the training stage, the autoencoder requires pairs
of corrupted and undistorted utterances. In this work, the undis-
torted data consists of 132 hours of training Czech speech (similar
to acoustic model training) and its distorted counterpart is generated
artificially, in a manner described in Section 3.2

The autoencoder is trained using the filter bank features (similar
to acoustic model training). The training minimizes the mean square
distance between the distorted input and the clean target. This cri-
terion is sensitive to scaling, thus we normalize both training and
test data (each feature separately) to zero mean and unitary variance.
The same normalization values are utilized later in the test phase.

Our autoencoder is constituted of three hidden layers, with 1024
neurons in each layer. We use the ReLU activation function, a learn-
ing rate of 0.03 and a batch size of 512 samples. The training is
always stopped after 20 epochs.

We denote models trained on the data processed using a
fully connected autoencoder by the notation AE:Train set, e.g.,
AE:Piano 1; the setups are summarized in Table 1.

3.4. Convolutional denoising autoencoder

The convolutional autoencoder represents another network topology,
in which the neurons in the higher hidden layer have connections
to only several neurons in the lower layer. This model has been
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proposed for acoustic modeling and feature extraction in ASR con-
text in [21, 22]. Its advantages over a fully connected network in-
clude: easier modeling of translational variance within speech sig-
nals, which exist due to different speaking styles [23], and modeling
of local correlations within spectral representations of the speech.

We denote models trained on data processed by convolutional
autoencoder by the notation CAE:Train set, e.g., CAE:Piano 1; the
setups are summarized in Table 1.

The input feature vectors, targets, the training dataset, the acti-
vation functions and optimizing criterion remain the same as for the
AE. The topology of the two autoencoders differ in two aspects: 1)
the input layer; and 2) the substitution of the first hidden layer of the
AE by two convolutional layers in CAE (the number of hidden units
remains constant).

The input of CAE consists of 11 feature maps, which correspond
to 11 following frames in the input feature vector. Each feature
map is 39 elements long (number of filter bank features for a sin-
gle frame). The convolutional kernel in both layers is of size 5 × 1
(i.e., the weights are shared in frequency only). Between the convo-
lutional layers, there is a max-pooling layer; we use max-pooling by
factor of 3. The first hidden layer has 13 feature maps (i.e., 13× 39
hidden units) and the second one 39 (i.e., 39× 13 hidden units).

4. EXPERIMENTS

We report the results of our experiments via recognition accuracy
[%]; all improvements are stated as absolute.

4.1. Description of the test set

We consider two types of data involved in our experiments: 1) The
artificially generated data; and 2) the real-world speech recordings
with music in the background.

The generated datasets share common test speech recordings.
The set has a duration of 2 hours and 44 minutes (13622 words)
and it consists of dictated texts, recorded in a silent environment via
close-talk microphone. To the speech, we add piano tracks (8 min-
utes), piano and violin compositions (2 hours and 24 minutes) and
electronic music (40 minutes) with various SNR levels. We concate-
nate the available music as is necessary, to create background for the
whole test-speech set. For each scenario with a specific music type
and SNR level, we replicate the whole test dataset. Details of the
resulting datasets are summarized in Table 2. The piano and violin
compositions represent mismatched training-test conditions for all
variants of acoustic models. For Test:Electro dataset, the very low
SNR levels are omitted, because the scenario is too complicated then
(unintelligible even for human listener).

The real-world dataset was created by the authors solely for the
purposes of this paper and consists of 17 minutes and 22 seconds
of speech (2222 words), recorded from a digital broadcast of a local
radio station (Radiožurnál [24]). The speech comes from several
summaries, which are given at the beginning of the news program. A
track of electronic music is present in the background. We estimate
the average SNR level at about 10 dB.

4.2. Employed recognition engine

We use our own ASR system; its core is formed by a one-pass speech
decoder performing a time-synchronous Viterbi search.

The linguistic part of the system consists of a lexicon and a lan-
guage model. We use two types of language models: 1) A model
originating from newspaper texts for the scenarios with simulated

data; and 2) A model originating from broadcast transcriptions for
the scenario with real-world data.

The lexicon contains 550k entries (word forms and multi-word
collocations) that were observed most frequently in the corpora cov-
ering newspaper texts. The employed Language Model (LM) is
based on N-grams. Due to the very large vocabulary size, the sys-
tem uses bigrams. Our supplementary experiments showed that the
bigram structure of the language model results in the best ASR per-
formance with reasonable computational demands.

4.3. Matched training-test conditions

Here, we discuss performance achieved in scenarios with music gen-
res and SNR levels available during training. See Tables 3 and 4,
numbers styled in bold italics.

The baseline model achieves recognition accuracy of 85.0% on
undistorted data. For this case, the robust models achieve compa-
rable results (degradation by 0.1 − 1.1 %), i.e., the robustness on
distorted data is not achieved at the cost of worse performance on
clean speech.

Within the Test:Piano, the accuracy of the baseline model dete-
riorates with increasing amounts of added background music. The
decrease is 16.9% for the SNR level at 0 dB. All considered robust
techniques achieve much lower degradation (1.3 − 2.2%). Com-
paring MC models and AE/CAE models, their results are compara-
ble. The performance of more general models Piano 2 (trained on
a broader range of SNR levels) is comparable to the more specific
Piano 1.

In the Test:Electro scenario, the accuracy of the baseline model
deteriorates even more noticeably. The decrease is 46.1% for the
SNR level at 0 dB. The robust techniques are able to improve this
result by up to 35.8%. The model MC:Electronic achieves signifi-
cantly better results than AE:Electronic and CAE:Electronic, espe-
cially at lower SNR levels (9.1% and 12.3% at SNR 0 dB, respec-
tively). We hypothesize that the autoencoders require more training
data, when complex multi-instrumental music is considered. Con-
sidering higher number of hidden units in AE/CAE for this scenario,
a complimentary experiment (omitted due to lack of space) showed
some increase in the accuracy, but not up to the levels of MC.

Table 3. Accuracy [%] achieved on the Test:Piano dataset. The
numbers styled in bold italics denote matched train-test conditions;
normal font denotes unseen SNR levels.

Model SNR levels
clean 10 0 -10 -20

Baseline 85.0 82.0 68.1 41.4 16.4
MC:Piano 1 84.9 84.5 83.5 77.7 52.3
AE:Piano 1 84.8 84.6 83.4 77.2 52.6

CAE:Piano 1 84.8 84.5 83.3 77.9 54.4
MC:Piano 2 84.8 84.3 83.7 81.6 72.3
AE:Piano 2 83.8 83.5 82.8 79.3 67.6

CAE:Piano 2 83.9 83.7 82.8 80.1 70.3

4.4. Mismatched training-test conditions

This section discusses scenarios, in which the systems were exposed
to data with unseen SNR levels (negative SNR in Tables 3 and 4), and
unobserved music genres (piano and violin compositions in Table 5).

Within the Test:Piano, the accuracy baseline model falls to
16.4%. All Piano 1 models are able to partly improve by up to
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Table 4. Accuracy [%] achieved on the Test:Electro dataset. The
numbers styled in bold italics denote matched train-test conditions;
normal font denotes unseen SNR levels.

Model SNR levels
clean 10 5 0 -5

Baseline 85.0 78.9 65.1 38.9 18.4
MC:Electronic 84.8 83.6 81.6 74.7 53.1
AE:Electronic 84.5 82.3 78.6 65.6 38.4

CAE:Electronic 84.1 81.9 77.8 62.4 36.2

38% (SNR level −20 dB). The CAE:Electronic achieves the highest
accuracy for very low SNR. The access to data with negative SNR
levels (i.e., the Piano 2 models) during training improves the results
considerably, improving the baseline performance by up to 55.9%.

In the Test:Electro scenario, the baseline model performs poorly,
below 18.4% accuracy. Even the robust techniques are only par-
tially able to compensate the difficult acoustic conditions, achieving
53.1% accuracy, for SNR level −5 dB. The MC:Electronic performs
substantially better than both autoencoder models (by up to 14.7%).
This corroborates the lower performance of autoencoders in more
difficult scenarios.

The results achieved on Test:Violin demonstrate that the studied
techniques are functional on unobserved music genres and improve
their accuracy over the baseline recognizer (up to 24.3% at a SNR
level of 0 dB). The MC models are more robust with respect to un-
seen music genres than the AE/CAE models.

Considering the positive SNR levels, the best results are achieved
using MC:Electronic model, trained on the broadest spectrum of
music genres. This indicates that for the sake of scenarios with mis-
matched training-test conditions, it is beneficial to include a broad
range of genres in the training set. In the case of negative SNR
levels, the best performance is achieved by MC:Piano2, which had
access to negative SNR levels during training (but not the music
genre). This indicates that the benefits of adding broad spectrum
SNR levels in the training set are preserved even for unobserved
music genres during tests.

Table 5. Accuracy [%] achieved on the Test:Violin dataset. Bold
italics denotes matched train-test conditions; normal font denotes
unseen music genre and/or SNR levels.

Model SNR levels
clean 10 0 -10 -20

Baseline 85.0 76.2 46.8 18.2 5.7
MC:Piano 1 84.9 83.0 69.4 41.4 15.6
AE:Piano 1 84.8 82.1 64.8 37.2 14.0

CAE:Piano 1 84.8 82.0 65.8 37.9 14.3
MC:Piano 2 84.8 81.4 68.4 44.2 21.5
AE:Piano 2 83.8 80.5 63.9 38.7 16.6

CAE:Piano 2 86.9 81.1 66.4 40.9 18.9
MC:Electronic 84.8 83.5 71.1 39.0 13.5
AE:Electronic 84.5 81.4 62.2 31.7 9.9

CAE:Electronic 84.1 80.7 60.5 30.3 9.1

4.5. Real-world test set

The testing on our real-world dataset can be considered to be un-
der mismatched training-test conditions. The included music is of a
genre similar (but not identical) to music samples in the Electronic

dataset. We estimate the SNR level of these recordings to be about
10 dB. The robust techniques are able to improve over the baseline
recognizer by about 2.4%, which corresponds to the improvement in
the simpler Test:Piano scenario at SNR level 10 dB.

Table 6. Accuracy [%] achieved on the Real-world dataset (mis-
matched training-test conditions; unseen music genre).

Model
Baseline 83.7

MC:Elect 1 86.1
AE:Elect 1 85.8

CAE:Elect 1 86.1

5. CONCLUSIONS AND DISCUSSION

From the results stated above, we draw the following conclusions:
1) Both studied techniques are able to compensate for the perfor-
mance decrease (caused by interfering music) encountered by a
single-style baseline model. 2) The accuracy achieved by both tech-
niques is comparable for matched train-test conditions and simpler
background music. 3) The multi-condition models exhibit superior
accuracy for mismatched training-test scenarios (with unseen music
genre and/or SNR level) and for more complex background mu-
sic. We hypothesize that more complicated scenarios will require
more data to train the autoencoders. This holds for the Electronic
training dataset (which consists of a broad spectrum of music gen-
res) and also for the Piano 2 dataset (which contains a broad range
of SNR levels). 4) Comparing both autoencoder topologies, the
fully connected one achieves a higher performance compared to
convolutional one in more difficult scenarios. The convolutional
autoencoder exhibits a higher performance for simpler scenarios
and lower SNR levels. 5) In accordance with literature, the models
trained with broader range of music genres are more robust in mis-
matched train-test conditions. 6) The access to a broader range of
SNR levels during the training helps in scenarios with similar SNR
levels and unseen music genres.

The comparison of autoencoders is partly in contrast with the re-
sults presented in [15], where the performance of the convolutional
autoencoder was superior to a fully connected case for all considered
scenarios. We argue that this could be caused by: 1) the lower num-
ber of hidden units in our CAE compared to [15] (which we keep
equal to number of neurons in AE). Our complimentary experiment
confirmed that CAE benefits from the increased number of neurons
significantly more than AE. 2) We consider more general target mu-
sic (in [15], the autoencoders are trained for a specific ”song”, we
train with respect to a general genre).

Concerning computational demands, the multi-condition train-
ing is less demanding, requiring training/utilization of only a single
network. The advantage of autoencoders dwells in the simplicity
of obtaining large amount of data for training, because there is no
need for reference texts labeled manually. This fact inspires our fu-
ture work, in which we will study the size of the datasets required
for efficient training of the studied techniques and the benefits of
increasing/decreasing that size. We expect that the training of an
acoustic model on data preprocessed by the autoencoder requires a
smaller (labeled) dataset in comparison with full multi-conditional
training. Moreover, the autoencoder can be trained in a multilingual
fashion [15], serving as a preprocessing tool for several language-
specific acoustic models.
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