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ABSTRACT

�
Articulatory information can effectively model variability in 
speech and can improve speech recognition performance 
under varying acoustic conditions. Learning speaker-
independent articulatory models has always been 
challenging, as speaker-specific information in the 
articulatory and acoustic spaces increases the complexity of 
the speech-to-articulatory space inverse modeling, which is 
already an ill-posed problem due to its inherent nonlinearity 
and non-uniqueness. This paper investigates using deep 
neural networks (DNN) and convolutional neural networks 
(CNNs) for mapping speech data into its corresponding 
articulatory space. Our results indicate that the CNN models 
perform better than their DNN counterparts for speech 
inversion. In addition, we used the inverse models to generate 
articulatory trajectories from speech for three different 
standard speech recognition tasks. To effectively model the 

 temporal modulations while retaining 
spatiotemporal signatures, we explored 

a joint modeling strategy to simultaneously learn both the 
acoustic and articulatory spaces. The results from multiple 
speech recognition tasks indicate that articulatory features 
can improve recognition performance when the acoustic and 
articulatory spaces are jointly learned with one common 
objective function. 
 

Index Terms automatic speech recognition, 
articulatory trajectories, vocal tract variables, hybrid 
convolutional neural networks, time-frequency convolution, 
convolutional neural networks.
�

1. INTRODUCTION
 

Spontaneous speech typically includes significant variability, 
which is often difficult to model by automatic speech 
recognition (ASR) systems. Coarticulation and lenition are 
two sources of such variability, and speech-articulation 
modeling can help to account for this. Several studies 
[1][2][3][4] have demonstrated that speech-production 
knowledge (in the form of speech articulatory 
representations) improves ASR system performance by 

systematically accounting for variability such as 
coarticulation. Further studies [5][6][7] have demonstrated 
that articulatory representations provide ASR systems with 
some degree of noise robustness. 

The mapping from acoustics to articulations is known to 
be highly non-linear and non-unique [8]. Studies have 
explored using DNNs [9][10][11] for learning the nonlinear 
inverse transform of acoustic waveforms to articulatory 
trajectories. Speaker variation adds complexity to the 
problem and makes speech-inversion even harder [12][13]. In 
this paper, we explore using CNNs and DNNs for acoustic to 
articulatory speech inversion. The articulatory-speech dataset 
used in this work is synthetically generated by employing the 
Task Dynamics model [14]. More details about the synthetic 
articulatory-speech dataset are given in sections 2 and 3. 

Deep-learning techniques have become integral to current 
ASR systems. Convolutional neural networks (CNNs), are 
often found to outperform fully connected DNN architectures 
in ASR [15]. CNNs are noise robust [16][17] and are found 
to learn speaker-invariant data representations. In this paper, 
we present a parallel CNN architecture, where time-
frequency convolution is performed on traditional 
gammatone-filterbank-energy-based acoustic features, and 
time-convolution is performed on the articulatory 
trajectories. Each of the parallel convolution layers is 
followed by a fully connected DNN, whose outputs are 
combined at the context-dependent (CD) state level, 
producing senone posteriors. The proposed hybrid CNN 
(HCNN) architecture learns an acoustic space and an 
articulatory space, and uses both to predict the CD states.  

The word-recognition results from both the Wall�Street�
Journal (WSJ1) data, noisy WSJ data (Aurora-4), and 
Switchboard (300 hour) speech recognition tasks indicate that 
using articulatory information is beneficial when used in 
addition to standard filterbank features, providing 
complementary information that in turn reduces the word 
error rates (WER) in different evaluation conditions. A 
detailed description of the proposed hybrid CNN architecture 
is given in section 4. 
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2. DATASETS 
The articulatory dataset used to train the speech-inversion 
systems consists of synthetic speech with simultaneous tract 
variable (TV) trajectories. TVs (refer to [6] & [18] for more 
details) are continuous time functions that specify the shape 
of the vocal tract in terms of constriction degree and location 
of the constrictors. We 
Dynamic model (TADA) [14] along with HLsyn [19] to 
generate a synthetic English isolated word speech corpus 
along with TVs. TADA defines eight TVs altogether whose 
positional information is pictorially represented in Figure 1.  

TADA, along with HLsyn, is an articulatory-model-
based text-to-speech (TTS) synthesizer that, given text as 
input generates vocal tract constriction variables and 
corresponding synthetic speech. In this work, we used the 
CMU dictionary and selected 111,929 words, whose Arpabet 
pronunciations we then fed to TADA, which generated their 
corresponding TVs and synthetic speech. Each word from the 
CMU dictionary was separately fed to TADA four or five 
times. For each iteration, TADA randomly selected (a) 
between a male and a female speaker, whose mean pitch was 
randomly picked from a uniform distribution; (b) a different 
speaking rate (fast, normal, or slow); and (c) a different set of 
articulatory weights to introduce speaker-specific traits. This 
process enabled simulating a diverse set of speakers. 
Altogether 534,322 audio samples were generated 
(approximately 450 hours of speech), of which 88% of the 
data was used as the training set, 2% was used as the cross-
validation set, and the remaining 10% was used as the test set. 
Note that TADA generated speech signals at a sampling rate 
of 8 kHz and TVs at a sampling rate of 200 Hz. 

 
Figure 1. Eight tract variables from five constriction 

locations 

For the speech recognition tasks presented in this paper, 
the DARPA WSJ1 CSR dataset was used. For training, a set 
of 35,990 speech utterances (77.8hrs) from the WSJ1 
collection, having 284 speakers was used. For testing, the 
WSJ-eval94 dataset composed of 424 waveforms (0.8hrs) 
from 20 speakers was used. Note that for all the experiments 
reported here, speaker-level vocal-tract length normalization 
(VTLN) was not performed. We denote this dataset as WSJ1 
in our experiments described in this paper.  

For ASR under noisy and channel-degraded conditions, 
we used the Aurora-4 (noisy Wall Street Journal (WSJ0)) 
dataset [20]. Aurora-4 contains six additive noise versions 
with channel matched and mismatched conditions. It was 
created from the standard 5K WSJ0 database and has 7180 
training utterances of approximately 15 hours duration and 
330 test utterances. In all experiments, we have used 16 kHz 
sampled data for training and testing our speech recognition 
systems. Note that TADA along with HLsyn generates 
synthetic speech data sampled at 8 kHz, hence our speech 
inversion system can use a bandwidth of 0 to 4 kHz  
(corresponding to 8 kHz sampled data) to extract the TVs for 
speech recognition experiments. In Aurora-4, two training 
conditions were specified: (1) clean training, which is the full 
SI-84 WSJ training set without added noise, and (2) multi-
condition training, with approximately half of the training 
data recorded by using one microphone, and the other half 
recorded by using a different microphone, with different 
types of added noise at different signal-to-noise ratios 
(SNRs). The Aurora-4 test data includes 14 test sets from two 
different channel conditions and six different added noises in 
addition to the clean condition. The SNR was randomly 
selected between 0 and 15 dB for different utterances. The six 
noise types used were: car, babble, restaurant, street, airport, 
and train station. The evaluation set consists of 5K words 
under two different channel conditions. The original audio 
data for test conditions 1 7 was recorded with a Sennheiser 
microphone, while test conditions 8 14 were recorded by 
using a second microphone randomly selected from a set of 
18 different microphones (more details in [20]). 

For the Switchboard (SWB-300) ASR task, the training 
data consisted of 262 hours of Switchboard data, which 
contained telephone-conversation speech between two 
strangers on a preassigned topic. The Hub5 2000 evaluation 
set was used to evaluate model performance, where 2.1 hours 
(21.4K words, 40 speakers) of Switchboard data and 1.6 
hours (21.6K words, 40 speakers) of CallHome audio. The 
SWB-300 acoustic models were decoded with a 4-gram 
language model. 

 
3. SPEECH INVERSION

 

The task of estimating the articulatory trajectories (in this 
case, the TVs) from the speech signal is commonly known as 
speech-to-articulatory inversion or simply speech-inversion. 
During speech-inversion, the acoustic features extracted from 
the speech signal are used to predict the articulatory 
trajectories, where the inverse mapping is learned by using a 
parallel corpus containing acoustic and articulatory pairs. The 
task of speech-inversion is a well known, ill-posed inverse 
transform problem, which suffers from both the non-linearity 
and non-unique nature of the inverse transform [21][7]. 
However, because tract variables are a relative measure (e.g., 
LA is a measure of the distance between the upper and lower 
lip, instead of an absolute flesh point location defined in 
Cartesian coordinates as in pellet data), they are found to 
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suffer less from non-linearity and non-uniqueness compared 
to traditional flesh-point measures such as pellet trajectories. 

Based on previous observations [22], we explored using 
speech subband amplitude modulation features such as 
normalized modulation coefficients (NMCs) [23]. NMCs are 
noise-robust acoustic features obtained from tracking the 
amplitude modulations (AM) of gammatone-filtered subband 
speech signals in the time domain. The modulation 
information after root power compression is used to create a 
cepstral feature, where the first 13 discrete cosine transform 
(DCT) coefficients are retained. These cepstral NMCs are 
usually known as the NMC cepstral or (NMCC). In addition, 
we also explored using the above features without the DCT 
transform, which resulted in a 40-dimensional feature vector, 
and we denote them as NMCs. The features were Z-
normalized before being used to train the DNN/CNN models. 
Further, the input features were contextualized by splicing 
multiple frames. In this work, we separately explored the 
optimal splicing window for the DNN and CNN models. 

 
4. ACOUSTIC MODELS

 
We trained different acoustic models for the speech 
recognition tasks, where we explored traditional DNNs, 
CNNs, and time-frequency convolutional nets (TFCNNs) 
[24]. The acoustic models were trained with gammatone 
filterbank energies (GFBs). It was shown in [25] that CNNs 
give lower WERs compared to DNNs when using filterbank 
features and GFBs are better baseline features than mel-
filterbank energies (MFBs). To generate the alignments 
necessary for training the CNN system, a GMM-HMM model 
was used to produce the senone labels. Altogether, the GMM-
HMM system produced 3.2K context-dependent (CD) states 
for Aurora-4, 1.7K CD states for WSJ1, and 5.6K CD states 
for SWB-300. The input features to the acoustic models were 
formed by using a context window of 15 frames (7 frames on 
either side of the current frame), except for the TFCNN where 
17 frames of feature information were used.  

The acoustic models were trained by using cross-entropy 
(CE) on the alignments from the GMM-HMM system. For 
the CNN, 200 convolutional filters of size 8 were used in the 
convolutional layer, and the pooling size was set to 3 without 
overlap. The subsequent, fully connected network had four 
hidden layers, with 1024 nodes per hidden layer, and the 
output layer included as many nodes as the number of CD 
states for the given dataset. The networks were trained by 
using an initial four iterations with a constant learning rate of 
0.008, followed by learning-rate halving based on cross-
validation error decrease. Training stopped when no further 
significant reduction in cross-validation error was noted or 
when cross-validation error started to increase. 
Backpropagation was performed using stochastic gradient 
descent with a mini-batch of 256 training examples. For the 
DNN systems, we used five layers with 1024 neurons in each 
layer, with similar learning criteria as the CNNs. Note that for 

SWB-300, we evaluated a six hidden layer DNN acoustic 
model with 2048 neurons. 

In this work, we investigated modified deep neural 
network architecture to jointly model the acoustic and the 
articulatory spaces, as shown in Figure 2. In this modified 
architecture, two parallel neural networks are trained 
simultaneously. These two parallel neural networks model 
two things: (1) learning the acoustic space from the GFB 
features and (2) learning the articulatory space from the TV 
trajectories. 

 
Figure 2. Hybrid convolutional neural network (HCNN). The 
top layer represents the acoustic model, whose input is 
filterbank features, and the bottom layer represents the 
articulatory model, whose input is TV trajectories. 
 

The acoustic space is learned by using a time-frequency 
convolution layer, where two separate convolution filters 
operate on the input GFB features. These two convolution 
layers have the same parameter specification as that used in 
the TFCNNs. The articulatory space is learned by using a 
time-convolution layer that contains 75 filters, followed by 
max-pooling over five samples. Note that the cross-TV 
convolution operation may not produce any meaningful 
information, whereas time-convolution on the TVs can help 
in extract TV modulation-level information, which was the 
motivation behind selecting a time-convolution layer for 
learning the articulatory space. The fully connected DNN 
layers are different in size; we observed 800 neurons to be 
near optimal for learning the acoustic space, and 256 neurons 
to be near optimal for learning the articulatory space. Note 
that both the parallel networks are jointly trained. 

5. RESULTS
 
5.1 SPEECH INVERSION 
We explored using DNNs and CNNs for training speech-
inversion models, where contextualized (spliced) acoustic 
features in the form of NMCs (for CNNs) and NMCCs 
(cepstral version of NMCs for DNNs) were used as input, and 
the TV trajectories were used as the targets. The network 
parameters and the splicing window were optimized by using 
a held-out development set. -moment 
correlation coefficient (rPPMC) between the actual or ground 
truth and the estimated articulatory trajectories (averaged 
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across all the TVs) was used as the performance measure. A 
four-hidden-layer DNN containing 2048 neurons in each 
layer was found to be optimal. The convolution layer of the 
CNN had 200 filters, where max-pooling was performed over 
three samples. The CNN had three fully connected hidden-
layers with 2048 neurons in each layer.  

Table 1 presents the rPPMC values from the test set obtained 
from the DNN and CNN systems, showing that both the 
systems exhibited similar performance across all eight TVs 
of the test set. This similar performance can be attributed to 
the diversity of the training data, which contained a large 
number of speaker configurations, consequently making the 
DNN system more robust to speaker variation. 

Table 1: rPPMC for each TV obtained from the best DNN and 
CNN systems. 

 GLO VEL LA LP TTCD TTCL TBCD TBCL 
DNN 0.97 0.95 0.91 0.97 0.95 0.94 0.94 0.96 
CNN 0.97 0.96 0.91 0.97 0.95 0.94 0.94 0.97 

5.2 SPEECH RECOGNITION 
We selected the DNN speech-inversion model and used that 
to estimate the articulatory trajectories (TVs) for all datasets 
used in our speech recognition studies. Note that the DNN 
speech-inversion model was trained with neither real 
conversational speech nor any noise/channel-degraded data.  
From our past experiments we have noticed that the eight TVs 
are insufficient by themselves for use as ASR features [26]; 
hence, we combined them with standard acoustic features. 
Our initial ASR experiments were on Aurora-4, where the 
baseline system is the TFCNN system reported in [24], using 
GFBs as acoustic features. Given that Aurora-4 has 14 
different evaluation conditions depending on the noise 
conditions and microphone types, we used the standard 
partition of the evaluation set to report our results, where A 
and C represent the clean matched and mismatched channel 
conditions, respectively, and B and D represent the noisy 
matched and mismatched channel conditions, respectively. 
We investigated using bottleneck (BN) features by 
introducing a BN layer at the  third layer and 
combining the resulting BN features with GFBs to train a 
HCNN system; the fourth row in Table 2 corresponds to the 
results obtained from the BN-CNN features. 
     We applied the HCNN architecture to the clean WSJ1 
evaluation task and Table 3 presents the WERs from the 
different systems. For the SWB-300 baseline model, we 
trained 6-hidden layer DNN having 2048 neurons, with 
fMLLR transformed damped oscillator cepstral coefficient 
(DOCC) [27] features as input. The estimated TVs from the 
DNN speech inversion model was appended with the DOCC 
features and they were fMLLR transformed to train a 6-
layered DNN with 2048 neurons. The results from sequence 
trained MMI models are given below in Table 4. 
 
 
 

Table 2: WERs on multi-conditioned training task of 
Aurora-4 (16 kHz) from the baseline system using GFB 
feature and the HCNN using GFB + estimated TVs. 

feature model A B C D avg. 
GFB TFCNN 3.1 5.7 6.1 14.6 9.4 

GFB+TVDNN HCNN 3.3 5.7 5.5 14.2 9.2 
GFB+TVCNN HCNN 3.0 5.7 5.5 14.2 9.1 

GFB+TVBN-CNN HCNN 2.9 5.5 5.2 14.0 8.9
 

Table 3: WER from WSJ1 ASR experiments using baseline 
GFB features and GFB + estimated TVs.  

 
Table 4: WER from SWB-300 ASR experiments using 
SWB part of the Hub5 eval data. 

 
6. CONCLUSION

 
We investigated deep neural network (DNN)- and  
convolutional neural network (CNN)- based speech-
inversion systems for estimating articulatory trajectories 
from the speech signal. We observed that additional hidden 
layers consisting of a large number of neurons and longer 
contextual windows gave better inversion performance. We 
presented a hybrid convolutional neural network (HCNN), in 
which two parallel layers are used to jointly model the 
acoustic and articulatory spaces, which were trained with one 
objective function. Speech recognition results on Aurora-4, 
WSJ1, and SWB-300 speech recognition tasks showed that 
the proposed architecture using articulatory features 
demonstrated reduction in WERs in each of the clean, noisy, 
and channel-mismatched conditions. For the Aurora-4 and 
WSJ1 ASR tasks, the best WERs from the HCNN system 
were found to be 8.9% and 5.3%, respectively, which, to the 
best of our knowledge, are state-of-the-art results for these 
datasets. On SWB-300, the proposed architecture gave a 
WER of 12.1%. 

In the future, we will investigate merging the feature maps 
of the HCNN such that one DNN is trained for both the 
acoustic and articulatory information. We will also 
investigate the performance of the proposed architecture for 
languages other than English.  
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Features Models WER 
GFB TFCNN 5.7 

GFB+TVDNN HCNN 5.4 
GFB+TVCNN HCNN 5.6 

GFB+TVBN-CNN HCNN 5.3 

Features Models WER 
DOCC DNN-MMI 12.8 

DOCC+TVDNN DNN-MMI 12.1 
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