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ABSTRACT

Neural Network (NN) based acoustic frontends, such as denoising
autoencoders, are actively being investigated to improve the ro-
bustness of NN based acoustic models to various noise conditions.
In recent work the joint training of such frontends with backend
NNs has been shown to significantly improve speech recognition
performance. In this paper, we propose an effective algorithm to
jointly train such a denoising feature space transform and a NN
based acoustic model with various kinds of data. Our proposed
method first pretrains a Convolutional Neural Network (CNN) based
denoising frontend and then jointly trains this frontend with a NN
backend acoustic model. In the unsupervised pretraining stage, the
frontend is designed to estimate clean log Mel-filterbank features
from noisy log-power spectral input features. A subsequent multi-
stage training of the proposed frontend, with the dropout technique
applied only at the joint layer between the frontend and backend
NNs, leads to significant improvements in the overall performance.
On the Aurora-4 task, our proposed system achieves an average
WER of 9.98%. This is a 9.0% relative improvement over one of the
best reported speaker independent baseline system’s performance.
A final semi-supervised adaptation of the frontend NN, similar to
feature space adaptation, reduces the average WER to 7.39%, a
further relative WER improvement of 25%.

Index Terms— Speech recognition, neural network, CNN, joint
training, denoising autoencoder

1. INTRODUCTION

Despite recent significant advances in acoustic modeling with Deep
Neural Networks (DNNs) [1, 2, 3, 4], Automatic Speech Recogni-
tion (ASR) systems are still not robust enough to deal with noise,
speaker and domain variabilities unseen during training. To improve
speech recognition performances in these settings, four broad classes
of techniques are actively being pursued with DNN based acous-
tic models - feature compensation or signal enhancement, feature or
model space adaptation, data augmentation followed by multicondi-
tion style training and training with side information about undesired
variabilities in the signal.

Under the first class of techniques, DNNs are trained using noise
robust feature representations [5, 6, 7, 8] compensated for additive
and convolutive distortions. In addition to feature level compensa-
tion, signal denoising or enhancement techniques like Weiner filter-
ing, spectral subtraction, non-negative matrix factorization are often
used as well [9, 10, 11, 12, 13, 14]. The second class of methods are
generally variants or extensions of adaptation techniques previously
studied and employed with Gaussian Mixture Models (GMMs). In

conjunction with GMMs, DNNs in this case are trained on features
transformed using techniques like feature-space MLLR [15] or the
weights and biases of the DNNs are adapted similar to the adapta-
tion of Gaussian means and variances [16]. Neural network based
regularization schemes like modifications to network non-linearities
[17] can also be placed under this category of techniques.

More recently significant performance gains have been observed
under the third class of techniques using multicondition sytle train-
ing with neural networks after data augmentation with real and artifi-
cially created noises [18]. Although this approach increases network
training complexities, it can be combined with noise robust feature
representations or compensation techniques described earlier. In the
fourth class of techniques, information about undesired noise and
speaker variabilities is provided to allow the network to automat-
ically learn normalization transformations during training. In this
approach, i-vectors are concatenated along with traditional acoustic
features for training DNN models [19]. Similar to i-vector represen-
tations, estimates of noise [20] and speaker codes [21] have also been
explicitly provided to DNNs for noise and speaker compensation.

Interestingly the above mentioned broad classes overlap signif-
icantly as many recent neural network based robustness techniques
build on several of these categories together [22, 23, 24, 25]. In this
paper we develop a neural network feature frontend that combines
techniques from several of the above categories as well. We begin by
first training a denoising autoencoder as a frontend NN to learn de-
noising feature-spece transforms using multicondition style training.
Autoencoders have traditionally been used as models for initializing
and pretraining deep neural networks to learn useful representations
[26]. However more recently these networks have been shown to
be useful as denoising frontends that estimate clean acoustic fea-
tures from noisy inputs [27, 28]. After learning denoising feature
space transforms, the frontend is combined with a neural network
based acoustic model and jointly trained similar to the approaches
in [29, 30]. In this paper we focus on a speaker-independent system
and propose an effective multi-stage training algorithm for denois-
ing frontends. After pre-training the frontend NN alone with a par-
allel corpus, the frontend is jointly trained along with the backend
NN. The joint training updates network parameters of the entire NN,
including the denoising frontend, with a dropout technique for spe-
cific frequency bands at the joining layer and refines the denoising
frontend to better fit the backend NN. During test time, similar to
fMLLR, we learn transforms that further match the test data using
semi-supervised transcripts from sucessive decodes.

ASR experiments in this paper are performed on the Aurora 4
task [31] - a medium vocabulary task, based on the Wall Street Jour-
nal corpus. Using the task’s multicondition experimental framework
which utilizes a variety of noise types for train and several test sets
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containing both seen and unseen noise distortions, we investigate the
usefulness of our proposed training algorithm for joint NN based de-
noising frontend and backend acoustic models.

2. DENOISING AUTOENCODERS

To reconstruct clean acoustic features xn from corrupted input
acoustic features x̂n, autoencoders are trained on parallel noisy
and clean corpora to minimize the mean squared error loss func-
tion ||yn − xn||2 between the ”cleaned up” features yn and the
actual clean features. The mapping layer (encoding layer) of typical
denoising autoencoders have the form:

hi(zi) = f(Wizi + bi), (1)

where zi is the input to the i-th hidden layer. Wi and bi are the
weight matrix and bias vector, respectively. f() is a non-linearity
such as a sigmoid, tanh, or ReLU. A regularization term is often in-
cluded in the loss function to prevent over-fitting. Acoustic features
x̂n and xn can also include neighboring left and right frames as the
acoustic context. Denoising autoencoders are typically configured
with fully connected networks and use the same feature representa-
tions in inputs and outputs.

As an extension to traditional training techniques, these fron-
tends have also been combined and jointly trained with neural net-
work based acoustic models [29, 30]. In these jointly trained models,
the output layer of the NN denoiser frontend is treated as the input
layer of the backend acoustic model and integrated as a hidden layer
of the whole network. After joint training, since the frontend net-
work is refined to better fit the backend NN, the combined networks
have shown to yield better classification performances.

3. JOINTLY TRAINED DENOISING FRONTEND AND
ACOUSTIC MODELS

3.1. CNN-based denoising frontend

Figure 1 illustrates our proposed denoising frontend and acoustic
model backend framework. Unlike other denoising autoencoders,
our NN-based frontend is a CNN designed to estimate clean log
Mel-filterbank features from noisy log power spectrum features. We
hypothesize that such a frontend will learn both feature-space and
denoising transforms that not only denoise the signal but also reduce
the high dimensional noisy log-power spectrum features to lower di-
mensional features. As shown in Figure 1, our frontend not only
has convolutional layers but also fully connected layers. To allow
for seamless integration with the backend AM, the predicted targets
of denoising frontends have sufficient acoustic context. Since each
convolutional layer filter intrinsically has the capability to extract
important variational components while removing unnecessary com-
ponents from the acoustic features [32], CNN-based frontend NNs
realize better feature space transforms than DNN-based frontends.

Figure 2 illustrates examples of 9×9 filters obtained just after
training the denoising frontend and those after the joint training. In
the figure, red and blue colors represent positive and negative values,
respectively. Many filters in the first convolutional layer right after
training denoising frontend NN have complicated geometric patterns
reflecting both noise components in training data and information
that is necessary to map features to lower dimension. Figure 2 sug-
gests that the joint training with targets corresponding to phoneme
context dependent states, significantly changes some of the filters so
that they capture N -th order spectral patterns in time and frequency
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Fig. 2. Examples of 9×9 filters in frontend NN before and after joint
training.

plane such as delta features, which are important for phone classifi-
cation. Approximately half of the filters after the joint training, re-
tain characteristics similar to those learnt after training the denoising
frontend.

3.2. Multi stage training strategy for denoisng frontend

When we use multiple frames as the targets of the frontend NNs, it
is observed that the output features often have strong correlation be-
tween frames and are overly smoothened. As shown in Figure 3, to
circumvent this issue we first pretrain the frontend network with a
single frame target before expanding the target to N -frames and re-
training it. Weights obtained in the first stage of training (with single
frame targets) are used as initial weights for the second stage. We
expect the trained frontend NN to emphasize the center frame from
among the concatenated contexual frames while learning denoising
and other feature transforms required to characterize each phoneme.
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Fig. 3. Multi stage training strategy of denoising NN.
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Fig. 4. Dropout at joint layer.

Table 1. Baseline Performance (WER%) of CNN systems. # of layers indicates the total number of hidden layers consisting of convolutional
layers and fully connected layers.

System # of layers # of params A B C D AVG
CNN-1024 7L 8.7 M 4.30 8.23 6.93 15.91 11.15
CNN-768 10L 7.7 M 4.33 7.95 6.89 15.78 10.97

3.3. Frequency-wise dropout at joint layer

When training neural networks on a limited amount of data it has
been shown that randomly zeroing, or ”dropping out” a fixed per-
centage of outputs of a given layer can improve test set performance
significantly, since dropout training discourages detectors in the net-
work from co-adapting. This is turn limits the capacity of a network
and prevents over fitting [33]. In the current setting we hypothe-
size that incorporating dropout training at the joint layer where the
frontend and backend models are combined, can further reduce the
detrimental effects from over-smoothing of output frames. We pro-
pose applying dropout for specific frequency bands only at the joint
layer as shown in Figure 4. We hypothesize that applying dropout
will result in a more robust NN being trained as it simulates the ef-
fect of missing information by making the zeroed frequency bands
unavailable, thereby forcing other parts of the NN to compensate for
the missing information (similar to missing feature theory [34]).

4. EXPERIMENTS

4.1. Baseline evaluations

The proposed techniques are evaluated using a series of experiments
on Aurora 4 - a medium vocabulary task, based on the Wall Street
Journal corpus [31]. Neural network based acoustic models in our
experiments are trained on standard train and test data partitions for
the task similar to [35]. Test results are reported on 4 subsets com-
monly referred to as clean (test set A), noisy (test set B), clean with
channel distortion (test set C) and noisy with channel distortion (test
set D).

CNN-based baselines with different numbers of hidden layers
and units are built for the multi-condition task. Baseline CNN sys-
tems use 40 dimensional log Mel-frequency spectra augmented with
∆ and ∆∆s as inputs. The log Mel-frequency spectra are extracted
by first applying mel scale integrators on power spectral estimates
in short analysis windows (25 ms) of the signal followed by the log
transform. Each frame of speech is also appended with a context
of 11 frames after applying a speaker independent global mean and
variance normalization. The CNN baselines use two convolutional
layers with 128 and 256 hidden nodes each in addition to five and
eight fully connected layers with 1024 and 768 units per layer, re-
spectively. The CNN baseline systems with ReLU non-linearity es-
timate posterior probabilities of 2000 output targets. When ReLU
non-linearity is used, fixed dropout of 20% are applied on the all
fully connected hidden layers. All of the 128 nodes in the first fea-
ture extracting layer are attached with 9×9 filters that are two dimen-
sionally convolved with the input log Mel-filterbank representations.
The second feature extracting layer with 256 nodes has a similar
set of 3×4 filters that processes the non-linear activations after max

pooling from the preceding layer. The non-linear outputs from the
second feature extracting layer are then passed onto the subsequent
fully connected layers. The CNNs are discriminatively pre-trained
before being fully trained to convergence. These baseline systems
correspond to state-of-the-art systems for this task [35].

After training, the CNN models are decoded with the task-
standard WSJ0 bigram language model. Table 1 shows the baseline
results. Both the “CNN-768” and “CNN-1024” baseline systems
have almost the same numbers of network parameters. The “CNN-
768” system in particular has a similar topology to our proposed
system combined with frontend NN as illustrated in Figure 1.

4.2. DNN-based vs. CNN-based denoising frontend

In our first set of experiments we separately train frontend NNs and
backend acoustic models to compare the performance of a CNN-
based denoiser with a DNN-based one. The CNN-based denoising
frontend has two convolutional layers with 48 and 96 hidden nodes
respectively. The following two fully connected layers have 1024
hidden units each. While all the hidden nodes in the first convo-
lutional layer are connected to 9×9 filters, the nodes in the second
layers are connected to 4×3 filters. Max-pooling in frequency is
applied to the subsampling layers with a pooling size of 5 for the
first layer and 2 for the second. The denoiser is trained to esti-
mate 40-dimensional clean log Mel-filterbank features provided as
input without any additional feature context. No multi-stage train-
ing of the frontend NN addressed in Section 3.2 was applied here.
In all these experiments, the backend AM is trained with log Mel-
filterbank features from the trained denoiser frontend with a context
of ± 5 frames.

The denoiser frontend is trained with the mean square error
(MSE) criterion to convergence using stochastic gradient descent
on parallel training data available in the Aurora setup. The parallel
training data is fully randomized at the frame level and partitioned
into minibatches of 250 frames. Prior to complete training, the
fully connected layers of the network are grown incrementally with
layer-wise MSE based pre-training on one pass of the data. The
backend NN acoustic models have architectures with 1024 hidden
units for the five fully connected layers. In this section, the backend
NN was trained with sigmoid non-linearity and no dropout was
applied. Table 2 shows the results from this set of experiments. As

Table 2. Performance (WER%) using separately trained denoisers
and a fully connected DNN backend acoustic model.

Frontend NN A B C D AVG
DNN 5.75 10.59 12.16 22.76 15.57
CNN 5.29 9.82 9.75 21.26 14.41
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can be seen from the table, the CNN-based denoiser performs better
than the DNN-based one, suggesting that the CNN frontend is more
effective.

4.3. Multi-stage training strategy for denoising NN

In this subsection, we evaluate the training strategy of denoising NNs
proposed in Section 3.2. The topology of the CNN-based denois-
ing frontend is the same as Section 4.2 except for using 768 hidden
units in the fully connected layers. The denoiser is trained with both
single and multi-stage training strategies to estimate 40-dimensional
clean log Mel-filterbank outputs with a context of ± 5 frames from
256-dimensional log spectral features. The frontend NN and back-
end NN are combined as shown in Figure 1 and jointly trained after
the denoiser is constructed. The size of hidden units in the back-
end NN portion is also changed from 1024 to 768, considering the
total number of hidden layers that make up the frontend and back-
end. During the joint training the weights of the NN backend and the
CNN frontend were both updated. Table 3 compares the proposed
single stage and multi-stage strategies. In the single stage system
the frontend NN is trained with multiple frame targets without any
intermediate context expansion. As can be seen from the table, the
CNN-based denoiser trained with the multi-stage strategy performs
better than that trained with the single stage strategy. Compared to
the AM without any denoisers shown in Table 1, CNN-based fron-
tend trained with the multi-stage strategy improved performance in
Set A, B, and C.

Table 3. Comparison of a single and a multi-stage training strategy
for denoising NN.

Training scheme A B C D AVG
Single stage 3.79 7.11 6.99 16.11 10.72
Multi-stage 4.05 6.97 6.65 15.88 10.56

4.4. Results on dropout for specific frequency bands

In our third set of experiments we compare dropout techniques for
the joint training of frontend and backend NNs. The architecture of
the combined NN is the same as described in the previous section.
The output layer of the CNN frontend is connected to the input layer
of backend NN acoustic models via a hidden layer referred to as the
joint layer.

As shown in Table 4, using dropout only at the joint layer with
the algorithm described in Section 3.3 significantly improves the per-
formance on all of the test cases compared to the systems without
using any dropout. Dropout for all hidden layers of the backend NN
(“All layers” in the Table 4) also shows better performance than a no
dropout system, but the improvement is marginal. The final jointly
trained NN has 2 convolutional layers and 8 fully connected layers,
which is a similar topology to the baseline “CNN-768” in Table 1.
These results clearly show the advantage of the proposed training al-
gorithm. Table 4 also shows the results of applying sequence training
to our best system. The final sequence trained system achieved 9.0%
relative improvement compared to the best baseline system using
ReLU non-linearity and bigram LM. This is one of the best recogni-
tion performances reported in the literature in comparison with sim-
ilar speaker-independent systems without using any noise adaptive
training (NAT) [36].

4.5. Test time adaptation of frontend and acoustic model

This section investigates the impact of semi-supervised adaptation in
combination with the proposed method. Table 5 illustrates the per-

Table 4. Comparison of a dropout strategy during joint training.

Nature of dropout A B C D AVG
All layers 4.18 7.54 6.54 15.02 10.46
Joint layer 3.83 6.68 6.20 15.67 10.29

+ Sequence training 3.70 6.58 6.18 15.06 9.98

Table 5. Weight-decay based semi-supervised adaptation (WDA)
assuming a batch mode scenario.

System A B C D AVG
WDA-AL (All Layers) 3.61 5.75 5.64 12.82 8.62
WDA-FL (Frontend L.) 3.55 5.82 5.55 12.34 8.43
WDA-CL (CNN L.) 3.64 6.41 6.00 14.31 9.57

Table 6. Adaptation results with improved decodes and alignments.

System A B C D AVG
WDA: Baseline CNN 4.26 6.37 5.79 10.85 8.10+ 4 repeats
WDA-FL + 4 repeats 3.62 5.58 5.55 10.13 7.39
Supervised WDA-FL 2.30 3.43 2.78 7.22 4.92

formance obtained when weight decay based semi-supervised adap-
tation (WDA) [37] is applied to the test data set. Three scenarios
were studied wherein, all layers, the denoising frontend layers, and
only CNN denoising layers, were adapted. We hypothesize that
adapting just the frontend CNN layers can have the effect of a fea-
ture space transform applied to the entire test data set. As no speaker
information is available for this semi-supervised adaptation, this step
serves as a means to further adapt not to test speakers [38] but to the
noise and channel effects of the entire test data. As seen in Tables
5 and 6, WDA of the frontend denoising layers yeields the best per-
formance. Four iterations of WDA with improved transcripts further
reduced the WER down to 7.39%, which is better than that for base-
line CNN system at 8.10%. In contrast, the oracle WER, i.e., WDA
using supervised transcripts yields an average WER of 4.92%. Since
the frontend layers in our system serve as logmel feature extractors,
adaptation of the entire frontend shows the best reduction in WER.

5. CONCLUSIONS

In this paper we have developed a novel framework for jointly train-
ing data-driven feature transforms along with neural network acous-
tic models for robust ASR and have illustrated several techniques to
improve the proposed feature transforms. Novel contributions of this
paper include:
a. Techniques that learn and refine transforms in 3 distinct stages

using various kinds of data. Unlike previous approaches, in the
first step, denoising transforms are learnt in a completely unsuper-
vised fashion using parallel clean and noisy data. The transforms
are then refined in a fully supervised second stage in conjunction
with training of a NN based backend acoustic model. In the third
step, using semi-supervised transcripts, the learnt transforms are
finally adapted to test conditions.

b. Training of the denoising frontend first with a single frame target
and then expanding to a multiple frame target to avoid an over
smoothing between frames,

c. Introduction of frequency-wise dropout at the combination layer
while jointly training the frontend transforms and backend acous-
tic model NN,

d. Application of a weight decay based adaptation technique to the
denoising frontend using semi-supervised data at test time.
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