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ABSTRACT

Constructing deep neural network (DNN) acoustic models
from limited training data is an important issue for the devel-
opment of automatic speech recognition (ASR) applications
that will be used in various application-specific acoustic en-
vironments. To this end, domain adaptation techniques that
train a domain-matched model without overfitting by lever-
aging pre-constructed source models are widely used. In this
paper, we propose a novel domain adaptation method for
DNN acoustic models based on the knowledge distillation
framework. Knowledge distillation transfers the knowledge
of a teacher model to a student model and offers better gen-
eralizability of the student model by controlling the shape of
posterior probability distribution of the teacher model, which
was originally proposed for model compression. We apply
this framework to model adaptation. Our domain adapta-
tion method avoids overfitting of the adapted model trained
on limited data by transferring the knowledge of the source
model to the adapted model by distillation. Experiments show
that the proposed method can effectively avoid the overfitting
of convolutional neural network based acoustic models and
yield lower error rates than conventional adaptation methods.

Index Terms— Speech recognition, DNN acoustic mod-
els, domain adaptation, knowledge distillation

1. INTRODUCTION

Deep neural network (DNN) based acoustic models can
significantly improve the performance of automatic speech
recognition (ASR) systems, which is enabling various kinds
of ASR applications. Each application is designed for an
application-specific acoustic environment. For example,
voice search is used by the general public in various noisy
conditions, applications targeted at children are used by chil-
dren, and dialectal speech is input to speech assistant appli-
cations for particular local areas. This requires application-
specific acoustic models to be constructed for each target
acoustic environment.

An application-specific DNN acoustic model should
match the target acoustic environment and offer good gen-
eralizability. However, the amount of training data for each
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application tends to be small (at most 10 hours in many cases)
due to the costs of recording and transcription. For the practi-
cal use/development of ASR systems, avoiding the overfitting
of acoustic models caused by data scarcity is an important
issue. To this end, domain adaptation techniques that cre-
ate domain-matched acoustic models without overfitting are
widely used.

Several approaches have been investigated for the adapta-
tion of DNN acoustic models. Limiting the number of param-
eters updated by retraining is a widely investigated approach.
Most of the methods employing this approach extend neural
networks by introducing special adaptation-oriented param-
eters or structures, such as linear input/hidden layer [1, 2],
learning hidden unit contribution [3], and speaker dependent
linear transformation network [4]. Expanding the input fea-
tures is another commonly used approach. Auxiliary features
that capture global domain information, such as i-vector [5,6]
or speaker code [7], are input with standard acoustic feature
vectors as information used in adaptation. Regularization in
optimization is a third approach. This approach constrains the
gradients during training by the regularization term in the ob-
jective function so that information in pre-constructed source
models is retained by the trained model. Regularizers include
L2 norm [8] and Kullback-Leibler divergence (KLD) [9] be-
tween source and trained models.

We focus on the regularization approach since it has a ma-
jor merit; it makes no assumption as to model structure or in-
put. This means that regularization-based adaptation methods
are applicable to any existing or new models. In this paper,
we propose a novel adaptation method that uses the knowl-
edge distillation framework for regularization.

Knowledge distillation [10] was originally proposed for
model compression. A big (or ensemble) model that achieves
high accuracy but requires massive computation time is used
as the teacher model, and a small feasible model, called the
student model, is trained to imitate the behavior of the teacher
model by using output of the teacher model, called the soft
target, for computing the cross entropy loss function. The
generalizability of the student model can be enhanced by
using a temperature parameter to control the smoothness of
the soft target. This framework can be viewed as regular-
ization that constrains the gradients so that knowledge in the
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Fig. 1. Knowledge distillation. The loss function is the

weighted sum of hard and soft cross entropy.

teacher model is retained by the student model, and when the
teacher model is the source model of domain adaptation, this
framework straightforwardly becomes regularization-based
adaptation. Knowledge distillation has been used in studies
of acoustic models for reducing model complexity [11-16]
and initializing recurrent neural network based models [17].
To the best of our knowledge, our work is the first to apply
knowledge distillation to the acoustic model adaptation task.

The remainder of this paper is organized as follows. In
Section 2, we describe the knowledge distillation framework
and the proposed adaptation method. Furthermore, we dis-
cuss the relationship between the proposed method and the
KLD-based regularization method. Section 3 details our ex-
periments on real ASR application data. Finally, Section 4
concludes this paper.

2. KNOWLEDGE DISTILLATION-BASED
ADAPTATION

2.1. Knowledge distillation

Knowledge distillation trains the student model to imitate the
teacher model. A schematic diagram of knowledge distilla-
tion is shown in Fig. 1. The student model is trained so as to
minimize following loss function:

L= (1= p)Chua(x,y) + pCori(z, q), ¢))
K

Chara(@,y) = = > yilog pi(w), )
=1
K

Coon(,q) = =Y gilogpi(), 3
=1

where p is the weight of the hard and soft cross entropy losses,
K is the number of output classes, « is an input feature, p;(x)
is output (softmax) probability of the i-th class of the student
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model, y, called hard target, is a K dimensional one-hot vec-
tor in which y; is 1 if the i-th class is correct and 0 otherwise.
q, called soft target, is also a K dimensional vector, and g;
is the tempered softmax probability of the i-th class of the
teacher model, which is computed as follows:

 eplae)n) \
U7 T expley(@)/T) @

where z;(x) is pre-softmax output of the i-th class of the
teacher model and 7T is a temperature. As 1" becomes large,
soft target q approaches a uniform distribution. Note that 7'
should be multiplied to the gradient of the second term of Eq.
(1) in backpropagation. This keeps the balance between the
contribution of Chyg and Csore when T is changed since the
magnitude of the gradient is scaled by 1/772.

Hard target y is a one-hot vector that indicates the correct
class. On the other hand, soft target g is a smooth prob-
ability distribution, which contains the knowledge of the
teacher model, i.e. not only the correct class but also similar-
ity/correlation between classes. As described in [10], learning
the similarity between classes from the teacher model is im-
portant to raise the generalizability of the student model.
Temperature 7' allows us to control the importance of the
class similarity information in training. When 7" is set larger
than 1, small probabilities of non-target classes are empha-
sized and the class similarity information is more strongly
learned by the student model.

Usually, for model compression, a big or ensemble model
that achieves high accuracy but has infeasible computation
complexity is used as the teacher model, and a small feasi-
ble model is used as the student model. By this setting, the
student model achieves both high accuracy and feasible com-
putation complexity.

2.2. Adaptation by distillation

The first term of Eq. (1) is the standard cross entropy loss
function. Thus, the second term can be viewed as a regular-
ization term that constrains the student model so as to imitate
the teacher model. From this viewpoint, knowledge distilla-
tion can be straightforwardly applied to model adaptation.

In the acoustic model adaptation task, we have a source
model, Gyouree, and a small amount (N frames) of target do-
main data, {x,,y,,}(1 < n < N). The goal is to obtain an
adapted model, O,dapied, that matches the target domain and
has better generalizability. Domain adaptation by knowledge
distillation is conducted as follows:

1. Initialize Oagaptea as @ copy of Osource-
2. Set Odapea as the student model and Ogource as the

teacher model, then train agapiea On {Xy,y,} s0 as
to minimize Eq. (1).



Table 1. Size of adaptation and test sets. All data sets con-
tain both male and female utterances, and speakers in the test
sets were not included in the adaptation sets for speaker-open

Table 2. Structure of the NiN-CNN acoustic model in this
study. “conv” is a convolutional layer, “pool” is a max pool-
ing layer, and “fc” is a fully-connected layer. Especially

testing. “conv{1,2}b” corresponds to the NiN architecture [20].
Domain Adaptation set size  Test set size Layer Filter size Inputsize #Feature maps
Dialect 1 (Osaka) 0.5h/1h/3h/5h 1h 40x11 3
Dialect 2 (Fukuoka) 0.5h/1h/3h/5h 1h convla 5x11 36x1 180
Children 0.2h/0.5h/1h/2h 1h convlb 1x1 36x1 180

pooll 2x1 18x1 180
conv2a 5x1 14x1 180
The first term of Eq. (1) allows the adapted model to be conv2b 1x1 14x1 180

trained so that it can accurately classify in-domain data while pool2 2x1 7x1 180

the second term, simultaneously, allows the model to acquire fcl 2048

generalizability by learning the class similarity information fc2 2048

from the source model. softmax 3072

2.3. Relationship to KLD regularization

The KLD regularization proposed in [9] minimizes following
loss function:

K K
Lxip = —(1-p) Zyz log p;(x) — PZ(L' log pi(x), (5)
i=1 i=1

R ©)
> j—1exp(z(T))
Obviously, Eq. (5) is equivalent to Eq. (1) when T in Eq.
(4) is set to 1. Therefore, the temperature parameter of our
distillation-based adaptation is an extension of KLD regular-
ization, and enables the generalizability of the adapted model
to be controlled.

3. EXPERIMENTS

3.1. Data

Training set of the source model consisted of 1200 hours
of Japanese utterances recorded in various acoustic environ-
ments, and includes real data of voice search application,
call center recordings, Corpus of Spontaneous Japanese (aca-
demic presentations) [18], and Japanese Newspaper Article
Sentences (reading newspapers) [19]. The source model
already has robustness to noise/channel variability, but is vul-
nerable to dialectal and children’s speech since the training
set does not contain them.

Acoustic model adaptation to three domains, two Japanese
dialects (Osaka and Fukuoka) and children’s speech, were
investigated. 5 hours of dialectal speech and 2 hours of
children’s speech were recorded for domain adaptation, and
speaker-open 1 hour test sets were separately recorded for
each domain. Table 1 summarizes the adaptation and test sets
of each domain. As shown in Table 1, subsets of each adap-
tation set were randomly selected and also used for domain
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adaptation to investigate the relationship between adaptation
set size and recognition performance.

All utterances were recorded with 16kHz sampling rate
and 16bit resolution.

3.2. Conditions

The source (baseline) model was a convolutional neural
network with network-in-network architecture (NiN-CNN)
acoustic model [20]. Its structure is detailed in Table 2. The
sigmoid activation function was used for all hidden layers.
The acoustic feature consisted of 40 log mel filterbank coeffi-
cients appended with delta and acceleration coefficients. Each
static and dynamic component was spliced within 11 frames
and treated as a feature map, i.e. 3 feature maps of 40x11
size were input to the acoustic model. The source model was
trained on the data described in the previous section. The
same 3-gram language model was used in all conditions; it
has 520K vocabulary size and was trained on various text
corpora with a total of 2.3G words. Decoding was performed
by the WEST-based decoder VoiceRex [21,22].

To evaluate our distillation-based adaptation, the follow-
ing methods were compared:

e Simple retraining: All parameters of the source model
were simply retrained on the adaptation set.

e KLLD regularization [9]: The source model was
adapted by using Eq. (5). This was implemented by
setting the temperature parameter, 7" in Eq. (4), to 1.
Three values (0.1, 0.3 or 0.5) of the weight parameter,
p, were investigated.

e Distillation-based adaptation (proposed): The source
model was adapted by using Eq. (1) with the setting of
T > 1. Two values (3 or 5) of the temperature were
investigated and weight p was fixed to 0.1 that yielded
the lowest average error rate on KLD regularization.



Table 3. %CER in all conditions. The baseline performance in each domain is shown in the first row. Ir is the initial learning
rate, and p and T are the weight and the temperature parameters of knowledge distillation, respectively. Note that p = 0.0
means use of simple retraining and 7' = 1 means use of KLD regularization [9] as described in Section 2.3. The best results in

each column are highlighted in bold.

Dialect 1 (baseline: 32.6) | Dialect 2 (baseline: 21.1) Children (baseline: 13.7)

Method p T Ir 0.5h 1h 3h 5h | 0.5h 1h 3h 5h | 0.2h 0.5h 1h 2h

Retraining 0.0 - 0.08 |27.7 268 258 258 | 18.0 182 181 18.1 | 157 143 13.7 13.0
Retraining 0.0 - 0.008 | 26.2 252 236 233|168 164 158 153|138 126 124 123
KLD 0.1 1 008 |268 264 255 254|178 181 166 164 | 151 140 133 127
KLD 0.1 1 0.008 267 256 241 232|171 164 155 149 | 143 134 129 128
KLD 03 1 0.08 |27.3 271 26.1 256|180 175 166 163 | 147 13.8 132 129
KLD 05 1 008 | 283 284 269 257|185 181 17.1 170 | 144 138 137 134
Distillation 0.1 3 0.08 | 25.6 25.1 242 237|165 162 156 157|132 122 118 11.6
Distillation 0.1 3 0.008 | 25.7 24.7 233 231|162 154 153 149 | 128 120 119 11.7
Distillation 0.1 5 0.08 | 257 253 243 239|169 16,5 163 156 | 13.0 119 11.8 11.7

Stochastic gradient descent with momentum (= 0.9) was used
as the optimization algorithm for all methods. Other than
the standard value (0.08) of initial learning rate, a small
value (0.008) was investigated for the best conditions of each
method. 10% of the adaptation set was separated and used as
the held-out set for cross-validation (CV). Learning rate was
halved when CV frame accuracy decreased, and training was
stopped when the learning rate became smaller than 0.0008,
and the model achieving the best CV accuracy was used for
the test.

The source model was adapted to each adaptation set in
Table 1 by the above methods, and the adapted models were
evaluated by the character error rate (CER) on the correspond-
ing test set.

3.3. Results

Table 3 shows the CERs for all conditions. Distillation-based
adaptation consistently achieved lower error rates than KLD
regularization and simple retraining in all conditions. This
means that distillation-based adaptation can achieve adapted
models with better generalizability when the training data for
domain adaptation is limited. Especially in the condition of
“Children” domain with 0.2h adaptation set, while simple re-
training and KLD regularization could not avoid overfitting
and the performance was worse than the baseline, distillation-
based adaptation could achieve better results without overfit-
ting. These results indicate that generalizability control by the
temperature parameter is effective in avoiding the overfitting
caused by data scarcity.

In many conditions, the small initial learning rate yielded
lower CERs than the standard value. However, sensitivity
to the initial learning rate was reduced when regularization-
based methods (both KLD and distillation) were used. This
means that local optima of the loss function were moved to
appropriate position by the regularization term. This is a good
property for practical applications where time and computa-

5188

tion resources are limited and dedicated hyperparameter tun-
ing is difficult.

Though further investigation is needed for confirmation,
it seems that there is correlation between the baseline per-
formance and the gain by distillation-based adaptation. It
can be reasonably argued that the reliability of the soft tar-
get impacted the performance of the adapted model, while
distillation-based adaptation could achieve useful gain even
with the relatively high baseline CER of “Dialect 1”” domain.

4. CONCLUSIONS

In this paper we proposed a novel acoustic model adapta-
tion method based on the knowledge distillation framework.
The proposed method uses knowledge distillation as regular-
ization that constrains the adapted model into imitating the
source model in order to avoid overfitting. We also showed
that our distillation-based adaptation is an extension of KLD
regularization, and its use of a temperature parameter offers
control over the generalizability of the adapted model.

Experiments on three real acoustic domains (dialectal and
children’s speech) showed that distillation-based adaptation
could effectively avoid overfitting when training data was
scarce and achieve lower error rates than conventional KLD
regularization and simple retraining.

Though we examined adaptation of the NiN-CNN acous-
tic model in this work, other kinds of neural networks, such
as a long short-term memory or a highway network, can be
effectively enhanced by adoption of distillation-based adap-
tation since it makes no assumption as to the model structure
used.
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