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ABSTRACT

In this paper, we continue our work on linear least squares based
adaptation (LLS) for deep neural networks. We show that our previ-
ously proposed algorithm is a special case of an optimization algo-
rithm called Alternating Direction Method of Multipliers (ADMM).
We demonstrate that the adaptation algorithm can improve the per-
formance on various deep neural networks including the bidirec-
tional long short term memory (BLSTM). On the Switchboard subset
of the Hub5 2000 evaluation set, we show that LLS adaptation can
achieve 6 to 9% relative word error rate (WER) reduction, and im-
prove our two-pass system to 7.5% WER. In this paper, we also ana-
lyze the factors that could contribute to the success of an adaptation
algorithm. This helps us to understand under what circumstances,
adaptation could improve the system performance.

Index Terms— Speech recognition, unsupervised adaptation,
Switchboard

1. INTRODUCTION

The goal of adaptation is to improve system performance by us-
ing a small amount of target data. Back in the days when Gaus-
sian Mixture Models (GMM) was the mainstream in acoustic mod-
eling, adaptation algorithms like maximum likelihood linear regres-
sion (MLLR) [1], constrained MLLR (CMLLR) [2] and maximum-
a-posteriori (MAP) [3] have shown to be effective for adaptation and
consistently improved system performance on different domains,
languages and conditions. Since deep neural networks (DNN) be-
came the prevalent acoustic model, many new adaptation algorithms
have been developed, but the task remains challenging. One of the
reasons is the sheer amount of parameters in a DNN. With limited
amount of adaptation data, estimating the parameters reliably is dif-
ficult.

In this paper, we focus on model space adaptation approaches.
Existing model space approaches like fine-tuning [4, 5, 6] aim to ad-
just the parameters with careful tuning and regularization methods.
While these techniques are successful for supervised adaptation, re-
sults on unsupervised adaptation are mixed. Learning hidden unit
contributions(LHUC) is a novel adaptation algorithm [7, 8]. Instead
of estimating the DNN parameters directly, LHUC learns a scaling
factor for each hidden unit so the activation could be adjusted based
on the adaptation data. LHUC shows successful results on unsuper-
vised adaptation, however, the performance varies on different test
sets. For instance, [8] shows that LHUC is effective on smaller tasks
like AMI and TED talks, it fails to improve bigger tasks like Switch-
board. Generally speaking, the model space approach may not work
consistently across different domains or conditions, and it is often

unclear about the underlying reasons that contribute to the success
or failure of an algorithm.

In this paper, we continue our work on linear least squares based
adaptation (LLS) [9]. We show that our approach would work on
the state-of-the-art large scale speech recognition systems. We also
recast our algorithm as a special case of an optimization algorithm
called Alternating Direction Method of Multipliers (ADMM) [10].
We analyze the factors that contribute to the success of an algorithm,
and resulting in a set of conditions that are required by our adaptation
algorithm. We believe the same analysis method can be applied to
study other adaptation algorithms.

This paper is organized as follows: In section 2, we describe our
adaptation algorithm and how it connects to ADMM. In section 3, we
describe our experiments on Switchboard. Section 4 is an analysis
of our results and we study the behavior of our proposed algorithm.
Finally, we conclude our work in section 5.

2. LINEAR LEAST SQUARES ADAPTATION AND ADMM

ADMM is a Lagrange multipliers based optimization algorithm [10].
Instead of using back-propagation to train a deep model, it trans-
forms the optimization problem into a series of LLS problems where
each of them has a simple and tractable solution. ADMM can be
used to optimize most deep models but for simplification, we focus
on describing how ADMM can be used to optimize a DNN with
fully connected layers. However, the idea can be applied to more
complicated models like recurrent neural networks.

We define a DNN using the following notations: a DNN may
contain N + 2 layers where the first layer (indexed with 0) is the
input layer, and the last layer (indexed with N + 1) is the output
layer. Layer 1 to N are the hidden layers and each layer contains
Ki units. Each unit has an activation function. Mathematically, each
layer of the DNN can be evaluated by the following equations,

zit = fi(y
i
t) (1)

yit = Aix
i
t + bi (2)

xit = zi−1
t if i > 0 (3)

where zit is the output of the i-th layer; fi is the activation function
of the i-th layer, say a sigmoid function for the hidden layers and a
softmax function for the output layer; Ai and bi are the weights of
the i-th layer; xit is the input to the i-th layer and zi−1

t is the output
of the (i− 1)-th layer which serves as an input to the i-th layer.

For simplicity, assuming that we optimize i-th layer of a DNN
with an objective function, E, our goal is to estimate Ai and bi
such thatE is minimized. Conventional back-propagation algorithm
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would use gradient descent, but for ADMM, it introduces a slack
variable yi∗t such that the optimization problem becomes

argmin
Ai,bi,y

i∗
t

E(Ai, bi, y
i∗
t )

s.t. zit = fi(y
i∗
t )

yi∗t = yit = Aixt + bi (4)

The purpose of introducing this slack variable, yi∗t , is to separate
the optimization problem into two parts. The first part tries to find
yi∗t , which represents an ideal internal activation that minimizes E.
Then, Ai and bi are optimized to approximate yi∗t . The first part can
be done using gradient descent and the second part can be formulated
as a simple LLS problem. Mathematically, this entire process can be
described using augmented Lagrangian [11],

L = E + λ′t(y
i∗
t − yit) +

α

2
||yi∗t − yit||22 (5)

where λ is a vector of Lagrange multipliers; α is a term to control the
weight of the augmentation term, which serves for the regularization
purpose.

The method of Lagrange multipliers can be considered as a game
played by two players. The first player controls the primal variables
including yi∗t , Ai and bi and the goal is to minimize the Lagrangian.
The second player controls the dual variables, that is λt, and the
goal is to maximize the Lagrangian. With the Lagrangian, we need
to derive the strategy of the first player. If it is classical Lagrangian
method, we would optimize the slack variable yi∗t and the DNN pa-
rameters Ai and bi jointly. However, the problem would become
intractable in our case. Instead, ADMM first optimizes yi∗t with gra-
dient descent,

∂L

∂yi∗t
=

∂E

∂yi∗t
+ λt + αyi∗t (6)

Then, we fix yi∗t and optimize Ai and bi. It is important to note that
once yi∗t is fixed, Ai, bi no longer depend on the objective function
E. We only need to solve the LLS problem so that yit could match
yi∗t as close as possible. The LLS problem is defined as,

argmin
Ai,bi

(1 + α
2
)||yi∗t − (Aixt + bi)||22 + λ′t(y

i∗
t − (Aixt + bi))(7)

Finally, we derive the strategy of the second player assuming the
primal variables are fixed.

∂L

∂λt
= yi∗t − yit (8)

In summary, each ADMM iteration has three steps: First, optimize
the slack variables. Second, solve the LLS problem to derive the
DNN parameters. Third, we update the Lagrange multipliers. This
process iterates until it converges.

As an optimization algorithm, the advantage of ADMM is easy
parallelization (solving the LLS problem in parallel). However, the
disadvantage is that ADMM exhibits slow convergence in many
problems [10]. Although it is a disadvantage for model training,
we argue that it is an advantage for adaptation, since we often deal
with a small amount of unreliable data. Hence, ADMM’s slow con-
vergence actually prevents the overfitting issue. Our previous work
in [9] can be considered as a special case of ADMM where we do
not update the Lagrange multipliers. In practice, we see little dif-
ference in performance, especially we only run 1 or 2 iterations for
adaptation. However, by pointing out the relationship between our
adaptation algorithm with ADMM, it helps us to understand the al-
gorithm better from a theoretical standpoint, including its behavior
and limits.

3. EXPERIMENTAL RESULTS

3.1. Data description

In this work, we use the same training data as described in [12]
for both acoustic and language model training. The acoustic model
training set consists of the Switchboard I and II, CallHome, and Cel-
lular corpora. There are 2300 hours of audio data in the acoustic
training. The text corpora used for language modeling include 27M
words of the transcripts from the acoustic data, 260.3M words of
Broadcast News transcripts, 115.9M words of CNN transcripts, and
525M words of Web data from the University of Washington. Based
on the text corpora, we built a 4-gram language model with 75K
vocabulary size. The language model has around 132M 4-grams.

We evaluated our baseline systems and our adaptation algo-
rithms on Hub5 2000 evaluation set. This evaluation set consists
of Switchboard test set and CallHome test set. The entire evaluation
set has around 3.6 hours of audio data and 80 speakers.

3.2. Baseline systems

Our baseline DNN system is based on the recipe for the hybrid
DNN-HMM system described in [13]. The input features to
the bottle-neck (BN) MLP for feature extraction are 32 log Mel
filter band energies with 3 Kaldi pitch features which consist of
normalized F0 across sliding window, probability of voicing and
delta. Mean subtraction is applied on the input features for each
conversation side. Hamming window followed by Discrete Cosine
Transform (DCT) are applied on the 11-frame concatenation of the
input features to reduce the dimension to 210. There are four hidden
layers with 1500 neurons except the BN layer which is the third
hidden layer. There are 40 neurons with linear activation in the BN
layer. The final DNN is trained on the BN features after CMLLR
transform with a splicing of [−10,−5, 0, 5, 10]. There are 6 hidden
layers in the DNN, and each hidden layer consists of 2048 neurons
with the sigmoid activation. The hidden layers are initialized using
stacked Restricted Boltzmann Machines (RBMs). To reduce the
training time, only 10% of the training data is used in the RBM
training. Finally, the DNN is retrained using cross-entropy followed
by sequence-discriminative training as described in [14].

In addition to the baseline DNN system, a Time Delay Neural
Network (TDNN) is also developed as described in [15]. There
are 40 Mel-frequency cepstral coefficients and 100-dimensional
I-vectors in the features for each time step input to the TDNN.
The context specification as proposed in [15] is used while three
hidden layers are appended after the contextual layers. There are 7
hidden layers in total in the TDNN. Every hidden layer is followed
by a p-norm nonlinearity layer to reduce the dimension from 3000
to 1500, and a normalization layer for stability [16]. The data
augmentation technique in [17] is also applied in the training. Two
augmentation copies of the training data corresponding to speed
perturbations of 0.9 and 1.1 are pooled with the original copy in the
training for the TDNN.

We also investigate recurrent neural networks based on long
short-term memory (LSTM) [18] and its bidirectional variant
(BLSTM) [19]. Our LSTM and BLSTM are built on the same
CMLLR transformed BN features used by the DNN model. Our
LSTM model consists of two fully connected hidden layers with
2048 sigmoid units, followed by two LSTM layers. Each LSTM
layer consists of 2048 memory cells with a recurrent projection layer
that projects the output to 1024 dimension. Our BLSTM model is
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similar to the LSTM model that has two fully connected layers with
2048 sigmoid units followed by two BLSTM layers. Each direction
in a BLSTM layer consists of 1024 memory cells and a recurrent
projection layer that projects the output to 300 dimension. The
fully connected layers in our LSTM/BLSTM models are initialized
with RBM, which we simply reuse the initialization from the DNN
model. The LSTM/BLSTM layers are randomly initialized but the
bias of the forget gate is initialized as one according to [20].

expt UDEC ADEC SWB CH
1 GMM - 19.4% 29.2%
2 GMM DNN 9.5% 17.0%
3 TDNN - 9.1% 16.3%
4 TDNN2 - 8.8% 15.5%
5 GMM LSTM 8.7% 15.3%
6 GMM BLSTM 8.0% 13.9%

Table 1. WER using the baseline systems for Switchboard (SWB)
and CallHome (CH)

The models used in our experiments are built using Sage [21],
which is a speech processing platform that integrates multiple
sources including Kaldi [22] and CNTK [23]. Table 1 shows the
performance of the DNN, TDNN, LSTM and BLSTM models. In
the table, UDEC is the unadapted decoding pass, while ADEC is
the adapted decoding pass. Since DNN, LSTM and BLSTM are us-
ing CMLLR transformed features, they need to decode with a GMM
to estimate CMLLR transforms. In contrast, the TDNN uses MFCC
features and I-vectors, so it only needs one pass. TDNN2 is a TDNN
retrained with the alignment computed by the BLSTM. We found
that it could improve the performance of TDNN. Our baseline sys-
tems are competitive compared to various work using Hub5 2000 as
an evaluation set [24, 25, 26].

3.3. Adaptation results

We evaluate our LLS adaptation with CMLLR transformed features.
CMLLR is a popular feature based adaptation technique for deep
models and LLS is only meaningful if it can provide additional gain.
For our experiments, the setting of our LLS adaptation follows our
work in [9], except that we perform adaptation on all fully connected
layers instead of only the output layer.

Table 2 and 3 contains the results of adaptation using CMLLR
only and CMLLR+LLS adaptation respectively. The results in ta-
ble 2 shows that CMLLR is insensitive to the choice of the first
pass model. Although both TDNN2 and LSTM reduce the word
error rate(WER) by half compared to the GMM, it does not affect
the final result at all. However, with LLS adaptation, we can ob-
serve WER reduction if we use certain first pass models. In which,
using TDNN2 as the first pass model and BLSTM as the second
pass gives 6.3% relative improvement in WER and reaches 7.5%
WER on Switchboard subset (comparing to experiment 6 in table 1).
Also, while TDNN2 and LSTM have similar performance, combin-
ing them could give 9.2% relative improvement as shown in experi-
ment 4 in table 3 (comparing to experiment 5 in table 1).

These results support that LLS adaptation is an effective adap-
tation algorithm and it works even on a very strong baseline. How-
ever, results in table 3 also show that the improvement depends on
the choice of the first pass model. For instance, using DNN or LSTM
in the first pass would not help BLSTM as much as TDNN2. In the
next section, we study the behavior of this LLS adaptation algorithm
and investigate the factors that would contribute to the success.

expt ADEC1 ADEC2 SWB (Improv.) CH (Improv.)
1 GMM* BLSTM 8.0% (-) 13.9% (-)
2 TDNN2* BLSTM 8.0% (0.0%) 13.8% (0.7%)
3 LSTM BLSTM 8.0% (0.0%) 13.8% (0.7%)
4 DNN BLSTM 8.0% (0.0%) 13.7% (1.4%)

Table 2. WER and relative improvement on Switchboard(SWB) and
CallHome(CH) using CMLLR adaptation only (*: For GMM and
TDNN2, it is UDEC instead of ADEC1)

expt ADEC1 ADEC2 SWB (Improv.) CH (Improv.)
1 TDNN2* BLSTM 7.5% (6.3%) 13.3% (4.3%)
2 LSTM BLSTM 7.7% (3.8%) 14.2% (-2.2%)
3 DNN BLSTM 7.9% (1.3%) 14.6% (-5.0%)
4 TDNN2* LSTM 7.9% (9.2%) 14.1% (7.8%)

Table 3. WER and relative improvement on Switchboard(SWB) and
CallHome(CH) using CMLLR+LLS adaptation (*: For TDNN2, it
is UDEC instead of ADEC1)

4. ANALYSIS
For discussion purpose, we call the model for generating the first hy-
potheses as AM1, and the model chosen to perform LLS adaptation
as AM2. In our analysis, we examine how different conditions may
affect WER reduction provided by LLS. For example, we may study
given the WER difference between AM1 and AM2 is within certain
range, what is the WER reduction if we use AM1 to generate the
hypotheses, followed by performing LLS on AM2 and decode with
the adapted AM2 (compared to using AM2 without LLS). By doing
so, we can find out under which conditions, we should perform LLS.

To gather the statistics, we perform LLS on different combina-
tion of models and record the WER reduction under different condi-
tions. Based on the results, we notice that in general, the gain from
adaptation increases as the accuracy of AM1 increases. This may
imply that the performance of AM1 is important. Figure 1 shows the
correlation between the WER difference between AM1 and AM2
versus WER reduction. Each bar in the figure represents the aver-
age WER reduction given the variable of interest is in the range of a
bin. The range of each bin is decided dynamically so each bin has
roughly the same number of speakers. On each bar, there is an error
bar that represents the standard deviation (+/- 1 standard deviation).

Fig. 1. WER difference vs WER reduction (x=[AM2’s WER -
AM1’s WER]; larger x means AM1 is more accurate than AM2)

The correlation in figure 1 shows the importance of AM1. In
practice, we do not know the WER of an unseen test set, so this figure
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cannot tell us when we should apply LLS adaptation. However, we
know that confidence measure often correlates with WER fairly well.
Figure 2 shows the correlation of the difference in AM1 and AM2
confidence scores versus WER reduction. The confidence scores are
computed using the geometric mean of the posterior scores of the
first best hypotheses in the lattices. This figure shows a similar trend
that if AM1 is more confident, it is more likely that LLS adapta-
tion would improve performance. The benefit of using confidence
measure is that we could use that as a feature to decide whether we
perform LLS adaptation or not.

Fig. 2. Difference in confidence scores vs WER reduc-
tion(x=[AM1’s confidence - AM2’s confidence]; larger x means
AM1 is more confident than AM2)

Although figure 2 gives us some indication of when to apply
LLS, it could not explain two phenomena. First, there is a high vari-
ance in WER reduction. This is true even for the cases where AM1
is clearly better than AM2 (the rightmost bar in figure 1). Second, al-
though LSTM and TDNN2 perform at similar performance, the gain
from LLS varies a lot when their hypotheses are used to adapt the
BLSTM (experiment 1 and 2 in table 3).

Figure 3 shows the relationship between the amount of adap-
tation and WER reduction. This figure shows that when there is
less than 120 seconds of adaptation data, LLS adaptation does not
improve performance and it also introduces large variance in perfor-
mance. Although the performance does not further improve as more
adaptation data becomes available, the variance reduces. This result
shows that LLS adaptation may need more data than the conven-
tional adaptation algorithms for GMM like MLLR. It is understand-
able as there are much more parameters in a deep model compared
to a GMM. As a result, LLS adaptation may require more adaptation
data.

Fig. 3. Amount of adaptation data vs WER reduction (x= amount of
data in seconds; larger x means there is more adaptation data)

To understand the performance difference in experiment 1 and 2

in table 3, we adopt the symmetrical KL divergence.

D =
1

T
(DKL(P ||Q) +DKL(Q||P )) (9)

where P and Q are two probability distributions; T is the number of
frames. In our case, P and Q are the outputs of AM1 and AM2, and
we compute the symmetrical KL divergence between two acoustic
models and normalize it with the number of frames. Our hypothesis
is LLS would work better if AM1 and AM2 are more different, so
this divergence measure can quantify the differences between two
models. Both AM1 and AM2 are not adapted with LLS when we
measure the divergence, so in principle, this analysis could tell us in
advance whether we should perform LLS adaptation.

Figure 4 is a plot between symmetrical KL divergence versus
WER reduction given that there are more than 120 seconds of adap-
tation data, and AM1’s confidence is higher than AM2’s. This figure
shows that under these conditions, WER reduction increases as the
divergence increases. This explains why using TDNN2 for adap-
tation is better than LSTM even though their performance is simi-
lar. It is because from the perspective of the BLSTM, TDNN2 pro-
vides more diversity than the LSTM: the symmetric KL divergence
of TDNN2 and BLSTM ranges from 2.8 to 4.2 (corresponding to the
three bars on the right in figure 4) while the divergence between the
LSTM and BLSTM only ranges from 0.4 to 0.8 (corresponding to
the two bars on the left in figure 4).

Fig. 4. Symmetrical KL divergence vs WER reduction given more
than 120s of adaptation data and AM1’s confidence is higher than
AM2 (larger x means AM1 and AM2 are more different)

In summary, we learn that for LLS adaptation to work, there are
three conditions. First, there should be enough adaptation data (over
120 seconds). Second, the model used for adaptation has to perform
well and third, good diversity of the models. This finding matches
our conventional wisdom and we believe this analysis provides a
systematic method to understand an adaptation algorithm.

5. CONCLUSIONS
In this paper, we continue to investigate LLS adaptation. We ex-
plain that our adaptation algorithm is a special case of ADMM, and
as an optimization algorithm, ADMM has some properties that are
suitable for adaptation. We evaluate our algorithm on Hub5 2000
evaluation against a strong baseline and we show that LLS adapta-
tion can improve system performance and achieve 7.5% WER on the
Switchboard test set. We also analyze the algorithm and show that
for LLS adaptation to succeed, there are three conditions: enough
adaptation data, competitive first pass performance and diversity of
the models. This analysis not only provides a clearer picture about
LLS adaptation, but we believe the same method can be applied to
studying other adaptation algorithms.
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