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ABSTRACT

Adapting acoustic models to speakers have shown to greatly improve
performance for many tasks. Among the adaptation approaches, ex-
ploiting auxiliary features characterizing speakers or environments
has received great attention because they allow rapid adaptation, i.e.
adaptation with limited amount of speech data such as a single utter-
ance. However, the auxiliary features are usually computed in batch
mode, which causes some inevitable latency. In this paper we ex-
plore an extension of the auxiliary feature-based adaptation to online
processing. We employ auxiliary features obtained from bottleneck
speaker vectors and extend their computation to online processing
using cumulative moving averaging. We test our proposed approach
for deep CNN-based acoustic models, using context adaptive net-
works to exploit the auxiliary features. Experimental results on the
CHiME-3 task demonstrate that the proposed approach can realize
online speaker adaptation.

Index Terms— Acoustic model adaptation, Online adaptation,
Bottleneck speaker vectors, Convolutional neural network

1. INTRODUCTION

Adapting an acoustic model to speakers is known to improve auto-
matic speech recognition (ASR) performance in many tasks. The
widespread use of deep learning-based acoustic models has led to
the development of various acoustic model adaptation techniques,
which can be classified into three main categories, i.e. feature trans-
formation [1–3], acoustic model parameter adaptation or retraining
with error-backpropagation [4–7], and exploiting auxiliary input fea-
tures [8–13]. The first two approaches require adaptation data with
labels or transcriptions. Consequently, two ASR decoding passes are
needed for unsupervised adaptation. Moreover, it usually requires a
relatively large amount of adaptation data to become effective.

An auxiliary input feature approach consists of training a deep
neural network (DNN)-based acoustic model with acoustic features
and auxiliary features. Typically, i-vectors or bottleneck speaker
vectors are used for speaker adaptation. By doing so, the network
learns to adapt its parameters given the auxiliary information about
the speaker. This approach presents the advantage that the auxiliary
features can be obtained without labels, making adaptation possi-
ble with a single ASR decoding pass. Moreover, auxiliary features
such as i-vectors or bottleneck speaker vectors can be extracted from
a limited amount of speech data, making utterance-level adaptation
possible. However, current appoaches for extracting the auxiliary
features assume utterance-level (or speaker-level) batch processing
to compute the auxiliary features. Therefore, it is impossible to start

This work was done while Tsubasa Ochiai was an intern at NTT.

the decoding procedure of the speech recognition system until the
end of the utterance. This inevitably creates some latency before the
system can output the recognition results.

In this paper, we propose to extend auxiliary feature-based
speaker adaptation to online processing. Online speaker adaptation
means that adaptation is performed by exploiting only past speech
samples, which can thus reduce drastically the latency of the ASR
system. To realize online speaker adaptation, we investigate online
extension of bottleneck speaker vector computation. Conventional
approaches for bottleneck speaker vectors train a DNN with a bot-
tleneck layer to predict speaker labels. The prediction is performed
on a frame-by-frame basis and the bottleneck speaker vectors are
obtained by averaging over the frames of a single utterance, which
generates a single vector per utterance [12]. This can be naturally
extended to online processing by using moving averaging. The re-
sulting bottleneck speaker vectors will then change frame-by-frame.

We investigate this approach with deep convolutional neural net-
work (CNN)-based acoustic models. For CNNs, simply adding the
auxiliary features to the input of the convolutional layer is not possi-
ble because the auxiliary features present a different time-frequency
structure than the input acoustic features. We have recently pro-
posed context adaptive CNN (CA-CNN) [14] to exploit auxiliary
features within the CNN. A CA-CNN factorizes one of its convo-
lutional layers into sublayers. The output of the factorized layer is
obtained as the summation of the contribution of the different sub-
layers weighted by the interpolation coefficients derived from the
auxiliary features. We investigate online bottleneck speaker vectors
with CA-CNN for speaker adaptation on the CHiME-3 task. Our ex-
perimental results confirm that online speaker adaptation is possible
and that adaptation may become effective after 3 seconds or less of
input speech data.

The remainder of this paper is as follows. In Section 2, we
review auxiliary feature-based adaptation and conventional ap-
proaches for extracting utterance-level i-vectors and utterance aver-
aged bottleneck speaker vectors. Section 3 describes our proposed
online bottleneck speaker vector extraction, and we discuss its rela-
tion with prior works in Section 4. Finally, we present experimental
results in Section 5 and conclude the paper in Section 6.

2. CONVENTIONAL AUXILIARY FEATURE-BASED
ADAPTATION

2.1. Overview

Auxiliary input feature approach, consists of training a DNN-based
acoustic model with acoustic features and auxiliary features, which
represent the context information such as speaker or environment.
Typically, utterance-level i-vectors or utterance averaged bottleneck
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(a) Baseline CNN (b) CA-CNN

Fig. 1. Schematic diagram of (a) baseline CNN, (b) the correspond-
ing CA-CNN.

speaker vectors are used for the speaker adaptation [9, 12].
The conventional approach consists of giving the auxiliary fea-

tures as an additional input of a fully connected layer of the DNN.
This implies compensation of the bias term of the corresponding hid-
den layer based on the auxiliary features.

However, for the CNNs, simply adding the auxiliary features to
the input of the convolutional layer is difficult because the auxiliary
features present a different time-frequency structure than the input
acoustic features. We have recently proposed CA-CNN to exploit
auxiliary features within a convolutional layer. This is realized by
factorizing the convolutional layers, where the auxiliary features are
used as the input to an auxiliary network that is used to calculate
interpolation coefficients of each factorized sub-layers.

The structure of the CA-CNN, which we used in the experiment
of this paper, is illustrated in Figure. 1. Because of the multilayer
structure, the factorized layer can be allocated to any of the convolu-
tional layers. As an example, in the figure, we allocate the factorized
layer to the third convolutional layer.

In the following for discussion simplicity, we assume that the
factorized layer is allocated to the i-th convolutional layer. The pa-
rameters of the factorized layer can thus be obtained as follows:

ŵi
n,m =

K∑
k=1

αkw
i
n,m,k, (1)

b̂im =

K∑
k=1

αkb
i
m,k, (2)

where, ŵi
n,m and b̂im are the adapted filter and bias of the i-th convo-

lutional layer associated with the n-th input and m-th output feature
maps, wi

n,m,k and bim,k are the basis filter and bias of the k-th fac-
torized sublayer, K is the number of the factorized sublayers, and
αk is the interpolation coefficient of k-th factorized sublayer.

αk(k = 1, 2, · · · ,K) is calculated as the outputs of the small-
size feed forward network, which is referred to as the auxiliary net-
work. The auxiliary network and the factorized sublayers are trained
jointly with the other part of the network, i.e., main CNN-based net-
work.

2.2. Utterance-level Auxiliary Features

2.2.1. Utterance-level i-vectors

I-vectors are often used as auxiliary features for speaker adaptation.
The i-vector is a low-dimensional vector representation, which rep-
resents the speaker information.

The i-vector approach models the speaker variability based on
a Gaussian mixture model (GMM). The speaker dependent GMM’s
supervector M is represented as follows,

M = m + Ti, (3)

where m is the GMM’s supervector of the speaker independent
GMM, which is referred to as universal background model (UBM),
T is a low-rank matrix which spans the total-variability subspace,
and i is the low-dimensional i-vector representation. The param-
eters of the i-vector extractor is trained based on the Expectation
Maximization (EM) algorithm.

Given a sequence of the acoustic feature vectors {x1,x2, · · · ,
xTu}, the i-vector representation for utterance u, which is referred
to as iu, is calculated as follows,

iu =
(
I + TTΣ−1N(u)T

)−1

TTΣ−1F(u), (4)

where I is the identity matrix, and Σ is the diagonal covariance ma-
trix, which represents the residual variability not captured by T, and
Tu is the total frame length of the utterance u. N(u) and F(u)
are the zero-order and first-order statistics, which are calculated on
the given utterance. Further details of the i-vector algorithm can be
found in [15].

2.2.2. Utterance Averaged Bottleneck Speaker Vectors

Utterance averaged bottleneck speaker vectors have been used as an
alternative to i-vectors for speaker adaptation. To create the utterance
averaged bottleneck speaker vectors, we first extract the framewise
bottleneck speaker vectors. This is done using a bottleneck DNN
(BN-DNN), which is trained to classify the training speaker’s indices
and the additional silence label. In the BN-DNN, the last hidden
layer is a bottleneck layer, whose dimension is basically smaller than
one of the other hidden layers.

After the training procedure, the BN-DNN is expected to extract
speaker information in the bottleneck layer. Therefore, the linear
output of the bottleneck layer is used as the framewise bottleneck
speaker vector. Since the framewise bottleneck speaker vectors are
very noisy, the vectors are usually averaged over a single utterance.
The utterance averaged bottleneck speaker vector for utterance u,
which is referred to as ãu, is given as follows:

ãu =
1

Tu

Tu∑
τ=1

auτ , (5)

where auτ is the framewise bottleneck speaker vector for the τ -th
input frame of utterance u.

2.3. Latency problem of conventional approaches

In the conventional auxiliary feature-based adaptation approach, the
acoustic model can be adapted by using the speech data of a single
utterance. Compared to the other approaches, it can be said that it is
a rapid adaptation approach.

However, to calculate the utterance-level auxiliary features, it
is necessary to wait until the end of the utterance. Namely, even in
the conventional auxiliary feature-based approach, it is impossible to
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start the decoding procedure of the speech recognition system until
the end of the utterance. It leads to the latency before the speech
recognition system can output the recognition results.

Therefore, for the situation where the response speed of the
speech recognition system is important, e.g., smart phone applica-
tions, it is not suitable to use the conventional auxiliary feature-based
approach using the utterance-level auxiliary features.

To decrease the latency introduced by the computation of the
utterance-level auxiliary features, we extend the auxiliary feature-
based approach to perform the online processing, which means that
it is possible to start the decoding procedure from the beginning of
the utterance.

3. PROPOSED ONLINE BOTTLENECK SPEAKER
VECTORS

To perform the online style decoding, we have to create the auxiliary
features using only the speech frames prior to the current time.

Framewise bottleneck speaker vectors can be used as the online
auxiliary features because they are calculated by using only the cur-
rent frame. However, such framewise bottleneck speaker vectors are
unstable to represent the speaker information, because the length of
the speech frame for the current time point is too short (about 0.2
seconds in the experiment of this paper) to capture the speaker char-
acteristics precisely. Therefore, like the conventional utterance aver-
aged bottleneck speaker vectors, it is assumed that it is important to
apply some kind of the averaging technique.

In this paper, we propose the moving average-based bottleneck
speaker vectors to realize the online streaming adaptation. There
are some variations of the moving average methods. In this paper,
we simply use the cumulative moving average, which is the aver-
age of all features up until the current time point t. Our choice of
cumulative moving average is governed by the fact that the online
bottleneck speaker vectors converge to the conventional utterance
averaged bottleneck speaker vectors at the end of the utterance. This
makes comparison with the conventional utterance averaged method
easier.

Our proposed online bottleneck speaker vector for utterance u at
the time t, which is referred to as ãut , is given as follows:

ãut =
1

t

t∑
τ=1

auτ (6)

=
(t− 1)ãut−1 + aut

t
(7)

Note that when the online bottleneck speaker vectors are calculated
in the form of Eq. (7), the computational cost is constant in each
time step. For the online adaptation scenario, such a constant com-
putational cost is a preferable property from the viewpoint of the
response speed of the speech recognition system.

4. RELATION TO PRIOR WORKS

Our work is related to previous works on speaker adaptation with
bottleneck speaker vectors such as [11,12], except that we extend the
concept to online processing and use it in the context of CA-CNN.

There are several related works on online i-vectors computation.
[16] proposed to employ the online i-vectors for speaker diarization,
where the i-vectors were extracted for every set of 10 input acoustic
features.

Online i-vectors have also been used in the context of ASR in
[17] but with a different purpose. In [17], instead of using all frames
of the utterance to calculate the statistics, the statistics of the online

i-vectors are calculated using only past frames at each time point,
and the i-vectors are sequentially generated by using the statistics.
Such online i-vectors were used during training to increase the vari-
ety of the i-vectors for training samples. During the testing stage, the
i-vectors were extracted offline using a sufficient amount of speech
data (60∼ seconds). To the best of our knowledge, there has been no
report of results with online i-vectors used during the testing stage.
In principle, the online i-vectors could also be used for online adap-
tation scenario in a similar way as our proposed online bottleneck
speaker vectors. We will compare our approach with the online i-
vectors.

5. EXPERIMENTS

5.1. Settings

5.1.1. Speech corpus and acoustic feature representation

We tested our proposed scheme on the CHiME-3 noisy speech cor-
pus [18]. The CHiME-3 is a noisy speech recognition task, consist-
ing of speech recorded with a six-microphone tablet device in four
environments, i.e., cafe (CAF), street junction (STR), public trans-
port (BUS) and pedestrian area (PED).

The training set consists of 1600 real utterances of 4 speakers
and 7138 simulated utterances of 83 speakers. The development
(dev) set consisted of 1640 real utterances and 1640 simulated ut-
terances of 4 speakers. The evaluation (eval) set consisted of 1320
real utterances and 1320 simulated utterances of the other 4 speak-
ers. In this experiment, we used the audio data from one microphone,
which is located in the center of the tablet device. Therefore, the to-
tal length of the training data was about 18 hours.

The acoustic feature vector consists of 80 log mel filterbank co-
efficients. It was normalized so that its mean and variance became
0 and 1, respectively. Then 19 concatenated acoustic feature vectors
(1520 dimensions) were used as input to the acoustic models.

5.1.2. Evaluated configurations

The architecture of our baseline CNN and the corresponding CA-
CNN are shown in Figure 1. The output consists of 5976 output
units corresponding to the HMM states. We used sigmoid activations
for all layers and used the dropout regularization [19] for the fully
connected layers.

In the CA-CNN, the auxiliary network consists of 2 hidden lay-
ers with sigmoid activations, each of which has 50 hidden units, and
an output layer with linear activation. The output of the auxiliary
network consists of 2 output units, which corresponds to 2 acoustic
context classes (sublayers). We chose 2 acoustic context classes as it
performed slightly better than using 4 or more classes. The dimen-
sion of all auxiliary features (i-vectors or bottleneck feature vectors)
was set to 50. Therefore, the auxiliary network has 50 input and 2
output units.

All models were randomly initialized, and directly optimized
using the cross entropy criterion. We used an initial learning rate of
0.08, a momentum of 0.9 and a batch size of 128. At each training
epoch, the learning rate was halved if the frame accuracy did not
improve for the dev set. The training procedure was stopped after
25 epochs. For online adaptation experiments we used the acous-
tic models trained with utterance-level auxiliary features because in
preliminary experiments it performed better than when using online
auxiliary features during training.

In this experiment, we compare 5 types of auxiliary features,
utterance-level and online i-vectors, and utterance-level, framewise
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Table 1. Experimental results (word error rate [%])
System dev eval
baseline CNN 11.38 19.48
i-vector (utt) 10.66 19.75
i-vector (online) 10.85 20.78
bottleneck (utt) 10.56 18.41
bottleneck (frame) 12.32 19.96
bottleneck (online) 10.99 18.88

and online bottleneck speaker vectors. The utterance-level and on-
line i-vectors were computed using the Kaldi toolkit [20]. For the
bottleneck speaker feature extraction, we use a fully connected net-
work with 3 hidden layers with sigmoid activations. The input con-
sists of the same input acoustic features used for the main CNN-
based network. The network was trained to estimate the 83 training
speaker labels added with an additional class for silence frames. The
last hidden layer consisted of bottleneck layer consisting of 50 units.
All the other hidden layers had 1024 units. Note that the computation
of the online i-vectors and online bottleneck speaker vectors assures
that the feature obtained at the end of the utterance corresponds to
the corresponding utterance-level feature.

For all experiments, we used a trigram language model for
decoding. The results were evaluated in terms of word error rate
(WER) for the real data of the dev and eval sets.

5.2. Results

Table 1 shows the WERs for the dev and eval sets for our baseline
deep CNN system, and for the CA-CNN systems using utterance-
level and online i-vectors, and bottleneck speaker vectors. For bot-
tleneck speaker vectors, we compared results for the framewise vec-
tors (not averaged), utterance-level averaging and the proposed on-
line extraction (cumulative moving averaging). We obtained these
results based on the configuration of the CA-CNN (the factorized
layer position) that performed best on the dev set. Note that there is
a great discrepancy in the nature of the dev and eval data sets, which
is clearly observed from the large performance gap of the baseline
system on the two data sets. This discrepancy can be explained from
the speaking style differences between the speakers of the dev and
eval sets [18].

From Table 1, we confirmed that using bottleneck speaker vec-
tors for auxiliary features is effective for adaptation. The utterance-
level bottleneck speaker vectors performed slightly worse than i-
vectors on the dev set, but outperformed i-vectors on the eval set.
Using framewise bottleneck speaker vectors degrades performance
compared to the baseline, which confirms that it is challenging to
capture speaker information from a very short context and proves
that the averaging operation is essential. The proposed online bot-
tleneck speaker vectors could improve performance compared to the
baseline but performed slightly worse than the utterance-level ones.
Such loss in performance is expected given the poor performance of
framewise bottleneck speaker vectors.

In our experiments, we confirmed that the systems using i-
vectors and online i-vectors could improve performance over the
baseline on the dev set but performed significantly worse on the
eval set. This is probably due to difference in the distributions of
speech features between the dev and eval speakers caused speaking
style differences [18]. We will include in our future works further
investigations of online i-vectors on different data sets.

Fig. 2. Relationship between total length of utterances and recogni-
tion performance (word error rate [%]).

5.3. Discussions

We investigated the effect of adaptation as a function of the length
of the utterances to informally evaluate the speed of adaptation. Fig-
ure 2 plots the WERs for the dev set as a function of the length of the
utterance in seconds for the baseline, utterance-level and online bot-
tleneck speaker vectors. The percentage of utterances in each time
interval to the total number of utterances in dev set is about 9.5%,
25.6%, 30.9%, 24.5%, and 9.6%, respectively.

Utterance-level bottleneck speaker vectors improve performance
in all conditions. This suggests that utterance-level bottleneck
speaker vectors computed with less than 3 seconds of speech can
already capture speaker characteristics needed for adaptation.

The proposed online bottleneck speaker vectors outperform the
baseline except for utterances shorter than 3 seconds, and perform
slightly worse than utterance-level ones. This results suggested that
online adaptation can start becoming effective at least after 3 sec-
onds. Further investigations are needed to get more precise evalua-
tion of the amount of data needed for online adaptation.

Moreover, we suspect that the initial silent portions of the utter-
ance may bias the estimation of the online bottleneck speaker vec-
tors, which may explains why online adaptation does not improve
over the baseline for short utterances. We will investigate approaches
to remove such initial bias in future works.

6. CONCLUSION

This paper proposed an online extension of auxiliary feature-based
adaptation. We extended the bottleneck speaker vectors approach
to online processing by using cumulative moving averaging, and
demonstrated performance competitive with utterance-level bottle-
neck speaker vectors for CNN-based adaptation using CA-CNN.

In this paper, we evaluated our proposed scheme only for a
CNN-based network structure. However, our proposed scheme can
be applied to other neural network structures such as deep neural
networks (DNNs) and recurrent neural networks (RNNs). Evaluat-
ing the effect of our proposed method for such network structures
will be part of our future research topic.

In addition, future research directions will include testing other
variations of moving averaging (e.g. moving window average) and
joint training of the bottleneck feature extractor and the network of
the CA-CNN in a similar way as [21]. We are also interested in
evaluating the proposed online adaptation with lecture or meeting
speech data where several consecutive utterances are spoken by the
same speaker.
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