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ABSTRACT

In this paper, we perform beamforming with a speech recognition-
level criterion. A beamformer is usually designed by optimiz-
ing signal-level criteria, e.g., by minimizing the beamformer
output covariance or by maximizing the signal-to-noise ra-
tio (SNR). Such signal-level criteria do not always guar-
antee that the optimized beamformer is the best for noise
robust automatic speech recognition. Recently, a few ap-
proaches have been proposed for performing beamforming
with a speech recognition-level criterion. These approaches
train beamformers along with an acoustic model by using
multichannel training data and a parallel corpus of noisy
and clean data. This paper proposes a novel approach for
estimating the beamformer for every test utterance with a
speech recognition-level criterion. We use an unsupervised
acoustic model adaptation scheme to optimize our beam-
former. Specifically, we first obtain decoding results with
an initialized beamformer, and then we optimize our beam-
former using back propagation to minimize the cross entropy
between the first-pass decoding results and actual network
outputs. With this approach, our beamformer can be trained
to discriminate hidden Markov model states more clearly
for every test utterance. Experimental results show that
our beamformer outperforms a beamformer designed with a
signal-level criterion.

Index Terms— Beamforming, automatic speech recogni-
tion, acoustic model adaptation

1. INTRODUCTION

This paper deals with beamformer estimation for noise ro-
bust automatic speech recognition (ASR). Beamforming is a
well-known technique for background noise suppression and
has been shown to be a promising approach for noise robust
ASR [1, 2]. By applying a linear filter to multichannel signals
recorded by a microphone array, a beamformer can enhance
a target speech signal and helps us to achieve more accurate
ASR.

To construct the beamforming filter, we need to design
a criterion to be optimized. For example, a minimum vari-
ance distortion-less response (MVDR) beamformer can be

obtained by minimizing the covariance of the beamformer
outputs without introducing distortion into the speaker direc-
tion parameterized by a steering vector. A maximum SNR
(max-SNR) beamformer can be obtained by maximizing the
SNR of the beamformer outputs. A delay and sum beam-
former can be obtained based on a direction-of-arrival (DOA)
estimate and a plane wave assumption. These beamform-
ers are estimated by optimizing signal-level criteria, there-
fore ASR systems that perform ASR after the beamforming
are completely excluded from consideration. Although these
beamformers are effective for ASR, their optimality for ASR
cannot be guaranteed with such signal-level criteria.

A few approaches have recently been proposed for opti-
mizing beamformers with an acoustic model [3, 4, 5]. Sainath
et al. have proposed a convolutional neural network (CNN)-
based approach, where a multichannel beamforming filter is
implemented as a convolutional filter in a CNN and connected
to subsequent neural networks. The overall network can be
regarded as a large acoustic model, whose input is a multi-
channel time domain signal, and whose output is a hidden
Markov model (HMM) state posterior. The acoustic model is
trained on training data by minimizing the cross entropy be-
tween correct labels and acoustic model outputs. Similarly,
Xiao et al. proposed deep beamforming networks [5] that es-
timate the beamforming filter from a generalized cross corre-
lation (GCC) [6] between microphones. The deep beamform-
ing networks are jointly trained with an acoustic model by
minimizing the cross entropy. While these approaches allow
us to perform beamforming with the cross entropy criterion,
they do not adapt the beamformer to unseen environments. In
addition, these approaches require a parallel corpus of clean
and noisy data to perform multi-task learning [4] or to train
the beamformer part of neural networks in advance [5].

This paper proposes a technique for beamformer estima-
tion for test environments, where the estimation is performed
with the cross entropy (CE) criterion. We recently proposed
a front-end optimization method with the CE criterion [7],
where denoising was achieved with time-frequency masking.
In contrast to our previous work, this paper applies our front-
end optimization method to beamforming, which we have
shown to be more effective for noise robust ASR than time-
frequency masking [1].
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We employ an unsupervised acoustic model adaptation
scheme (see, e.g., [8]), but the beamformer speech enhance-
ment parameter for multichannel observation is optimized un-
like the acoustic model adaptation. In particular, we first per-
form decoding with an initialized beamformer and obtain su-
pervision binary labels. Then we perform back propagation
to minimize the cross entropy between the supervision bi-
nary labels and actual acoustic model outputs. The beam-
former is estimated for every test utterance to enable the sub-
sequent acoustic model to better discriminate the HMM state
posterior. The number of estimated parameters for the time-
invariant beamformer is relatively small, which helps us to
avoid overfitting to the errorful supervisions. Finally, we per-
form decoding with the estimated beamformer, and obtain the
final decoding results. Our experimental results show the ef-
fectiveness of our proposed beamformer estimation in terms
of word error rate (WER) compared with an MVDR beam-
former estimated with a signal-level criterion.

2. BEAMFORMING

This section briefly describes a beamformer in the time-
frequency domain. Letyf,t,m denote them-th microphone
signal at frequencyf and timet. By using vector notation the
signals from allM microphones can be represented as

yf,t = [yf,t,1, . . . , yf,t,M ]T, (1)

where the superscriptT denotes non-conjugate transposition.
The beamformer, which is represented as a linear filter

in the frequency domain, can be described by using vector
notation as

wf = [wf,1, . . . , wf,M ]T. (2)

An enhanced speech signalŝf,t can be obtained by multiply-
ing the filter by the observed signal as

ŝf,t = wH
f yf,t, (3)

where the superscriptH denotes conjugate transposition.
The key to successful beamforming is the accurate esti-

mation of the filterwf for every test environment. Various
criteria have been proposed for beamformer estimation, most
of which are designed in the audio signal space. The aim
of this study is to estimate the beamformer with the speech
recognition-level criterion for every test utterance.

3. PROPOSED BEAMFORMER ESTIMATION

In this section, we first provide an overview of our proposed
beamformer estimation, which comprises beamformer ini-
tialization, first-pass decoding and beamformer estimation by
back propagation. Then we describe in detail these three steps
of our proposed method. We also provide an interpretation
of our proposed method in comparison with existing acoustic
model adaptation approaches.

Fig. 1. Overview of our beamformer estimation.

3.1. Overview

Figure 1 shows an overview of our proposed beamformer es-
timation method, which is based on a standard unsupervised
acoustic model adaptation approach. First, we initialize the
beamformer filter by using an existing beamforming method
to leverage recently developed powerful beamforming ap-
proaches. Second, we perform decoding with the initialized
beamformer to obtain supervision labels for beamformer
adaptation. The beamforming and feature extraction are re-
formulated as computational layers of neural networks, and
connected to the acoustic model. The beamforming filters
are finally optimized for every test utterance by using back
propagation, which minimizes the cross entropy between the
supervision labels and acoustic model outputs. This beam-
former estimation allows the beamforming filters to take
account of the subsequent recognition process, and the filters
are optimized to make the recognizer better discriminate the
HMM state posteriors. The optimized beamformer is used to
yield the final deciding results.

3.2. Beamformer initialization

We can use any existing beamformer estimation approach to
obtain initial values for the beamforming filters, which are
subsequently optimized with our proposed method. Recently,
several beamforming approaches have been shown to yield
great performance gains [1, 2, 9], even though the back-end
recognizer is not considered in the beamforming front-end.
We can leverage these existing approaches by using the es-
timated filters as the initial values, and this actually yielded
better performance in our experiments (see section 4 for more
details).
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3.3. First-pass decoding to obtain supervision labels

To perform beamformer adaptation with the CE criterion, we
need to obtain supervision labels. We follow the unsuper-
vised acoustic model adaptation scheme to obtain the super-
vision labels (see, e.g., [8] for details of deep neural network
(DNN) adaptation). We first perform forwarding with the ini-
tialized beamformer and an acoustic model trained in advance
to obtain estimated HMM state posteriors. The posteriors and
a language model are used to obtain initial decoding results,
i.e, a sequence of estimated words. Then, we perform forced
alignment and obtain a supervision label corresponding to ev-
ery time frame. Following this scheme, obtained supervi-
sion labels are different from the acoustic model outputs in
the following two respects; the supervision labels are refined
by the language model, and the supervisions are binary val-
ues while the acoustic model outputs are continuous values
from zero to one. Minimizing the CE between the supervi-
sion labels and the acoustic model outputs makes the acoustic
model outputs closer to binary values, which are refined by
the language model. Even though adapting too many parame-
ters would result in reproducing the same decoding results as
those of first-pass decoding, we retrain just the beamformer
filters, which can produce enhanced signals only by focusing
on a specific direction. This constraint of the retrained param-
eters, i.e., beamforming filters, helps us to avoid overfitting to
the errorful supervisions and to obtain performance gain by
forwarding again with the adapted beamformer.

3.4. Back propagation for beamformer estimation

Our beamformer filters are retrained based on the gradient de-
scent algorithm by performing back propagation with the CE
criterion. Our objective functionL(lsv, l̂), the CE between
the supervision labels and the acoustic model outputs, can be
described as

L(lsv, l̂) =
∑
t

L(lsvt , l̂t)

=
∑
t

CrossEntropy(lsvt , l̂t), (4)

wherelsv is the 1-best binary labels generated by the initial
decoding pass, and̂l is the acoustic model outputs, i.e., the
estimated posteriors. The filter can be updated based on the
gradient descent algorithm as

wf ← wf − α
1

T

∑
t

∂L(lsvt , l̂t)

∂w∗
f

, (5)

wherew∗
f andα denote the conjugate of the filterwf and the

learning rate respectively.
Now we reformulate beamforming and feature extraction

as neural network layers to calculate the gradient with respect
to the beamforming filter. The acoustic model outputsl̂ can

be calculated with Eq. (3) and

x̂ =FeatureExtract(ŝ), (6)

l̂ =AcousticModel(x̂), (7)

wherex̂ denotes extracted features.FeatureExtract(ŝ) de-
notes a function for extracting features from the enhanced sig-
nals, and it is usually parameterized by fixed parameters (e.g.
log-mel feature extraction and feature normalization by affine
transform). AcousticModel(x̂) denotes an acoustic model
for computing HMM posteriors from the acoustic features.
The acoustic model is trained in advance by using training
data. The overall computation process can be regarded as a
large model that outputs the HMM state posteriors from mul-
tichannel observations.

From Eqs. (3), (6) and (7), the gradient of the CE with re-
spect to the conjugate of the beamforming filter can be com-
puted by the chain rule as

∂L(lsvt , l̂t)

∂w∗
f

=
∂L(lsvt , l̂t)

∂x̂t
· ∂x̂t

∂ŝf,t
· ∂ŝf,t
∂w∗

f

, (8)

where∂ŝf,t
∂w∗

f
can be described as

∂ŝf,t
∂w∗

f

= yTf,t, (9)

from Eq. (3). ∂L(lsvt ,l̂t)
∂x̂t

can be computed because the gradi-

ent is used in the acoustic model training.∂x̂t

∂ŝf,t
can also be

computed because the feature extraction is described by basic
computations, i.e., addition, multiplication, the log function
and the power operation.

3.5. Interpretation of proposed method

The proposed adaptation scheme is related to other adapta-
tion approaches such as the DNN retraining approach inves-
tigated in [10], the linear input network (LIN) [11], learning
hidden unit contributions (LHUC) [12], and feature-space dis-
criminative linear regression (fDLR) [13]. Indeed, when con-
sidering the combination of the beamformer and the acoustic
model as a single neural network, the approach becomes sim-
ilar to retraining the parameters of the first layer, LIN with a
diagonal linear transformation matrix, or LHUC applied to
the input layer. The major difference is that the proposed
approach operates in the complex domain, whereas LIN and
other adaptation approaches are usually employed after the
feature extraction process. By performing adaptation in the
complex domain and on multiple channel signals, we are able
to exploit the spatial information. We will investigate the
combination of our approach with other adaptation techniques
in future work.
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Table 1. WERs on the real data in the development and evaluation sets.

systems
dev eval

avg bus caf ped str avg bus caf ped str

w/o speech enhancement 10.33 15.93 8.61 7.08 9.72 16.80 24.30 18.01 12.91 11.97
Proposed beamformer w/ ref-mic init. 10.10 15.46 8.55 6.86 9.53 16.33 23.78 17.61 12.28 11.65
CGMM-MVDR beamformer [1, 2] 5.97 8.84 4.88 4.43 5.72 9.06 12.30 7.58 8.52 7.83

Proposed beamformer w/ CGMM-MVDR init. 5.79 8.28 4.85 4.40 5.62 8.89 11.95 7.45 8.31 7.84

4. EXPERIMENTAL EVALUATION

4.1. Settings
We conducted experiments using the CHiME-3 corpus [14]
to evaluate the effectiveness of our proposed beamformer
in terms of WER. The corpus consists of read utterances
that were recorded with six microphones attached to a tablet
device in four different environments: public tranportation
(bus), caf́e (caf), pedestrian area (ped), and street junction
(str). The sentences were taken from the WSJ0 corpus. The
training set comprises 1600 real and 7138 simulated utter-
ances. The audio data from all six microphones were used
for training, which amounts to about 108 hours. The devel-
opment and evaluation sets consist of 1640 and 1320 real
utterances, respectively.

In our experiments, we performed speaker independent
decoding by using a deep convolutional neural network
(CNN) acoustic model [1, 15, 16] and a recurrent neural
network (RNN) language model [17, 18]. The CNN con-
sisted of five convolution layers and two max-pooling layers,
where all the layers contained 180 feature maps. The last
convolution layer was followed by two fully connected lay-
ers with 2048 units and a softmax layer. The softmax layer
contained 5976 units, i.e., context-dependent HMM states.
The RNN language model used 10 classes and accommo-
dated 250 units in the hidden recurrent layer. The inputs to
the acoustic model comprised 80-dimensional log mel-filter
bank channel outputs, where the filter bank outputs at 19 time
frames were concatenated as an input for a center time frame.
Utterance-wise mean normalization was performed after the
log mel-filter bank feature extraction, which was followed
by feature normalization using the first- and second-order
statistics obtained from all the training data.

We considered two methods for our beamformer initial-
ization. One is called reference microphone initialization,
where all beamformer components are initialized to extract
a single-channel observation recorded with a reference mi-
crophone. The other initialization method utilizes the unsu-
pervised masking-based beamformer described in [1, 2]. In
particular, we first performed time-frequency mask estimation
based on a complex Gaussian mixture model (CGMM) by
maximizing the log-likelihood criterion [19]. Then, the steer-
ing vector of the target speaker was extracted as the eigenvec-
tor associated with the maximum eigenvalue of the covariance
matrix of the target speech, where the covariance was cal-
culated with the estimated masks and multichannel observed

Table 2. Experimental conditions.
Sampling frequency 16 kHz
Frame length 25 ms
Frame shift 10 ms
Window function Hanning

signals. The initial beamformer was obtained as the MVDR
beamformer that was parameterized by the estimated steering
vector. The beamformer was updated 30 times with Eq. (5)
by using an utterance-batch processing approach. The learn-
ing rateα was set at4 × 103 for the reference microphone
initialization, and set at6× 103 for the masking-based beam-
former initialization. These learning rates were tuned using
the development set. Other experimental conditions were set
as in Table 2.

We compared the performance of the proposed method
with the beamformer obtained with the signal-level criterion
[1, 2] that was used for the beamformer initialization.

4.2. Results
Table 1 shows the WERs obtained with the proposed and
competing methods. With the reference microphone ini-
tialization, our proposed beamformer estimation achieved a
WER improvement compared with the WER obtained with-
out speech enhancement, while its improvement was limited
and smaller than that obtained with the MVDR beamformer.
While the MVDR beamformer greatly reduced the WERs
for all the environments, our proposed beamformer estima-
tion yielded a further performance gain by using the MVDR
beamformer for our beamformer initialization. These re-
sults shows the effectiveness of our proposed beamformer
estimation.

5. CONCLUSION

This paper proposed a novel approach for unsupervised beam-
former estimation with a CE criterion. We first performed
initial decoding to obtain the supervision labels with the ini-
tialized beamformer. Then, our beamformer was estimated
for every utterance by minimizing the CE between the super-
vision labels and the acoustic model outputs. The estimated
beamformer enabled the acoustic model to better discriminate
the HMM states. Experimental results showed that our beam-
former outperformed the conventional beamformer obtained
with a signal-level criterion in terms of WER for the CHiME-
3 evaluation set.
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