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ABSTRACT obtained by minimizing the covariance of the beamformer

. . . outputs without introducing distortion into the speaker direc-
In this paper, we perform beamformlng with a speech regognlﬁl&[l?- parameterized by a steering vector. A maximum SNR
!evel .crlterlon. A b.ear.nformer IS usya}lly qe3|gned by Optlmlz'(max-SNR) beamformer can be obtained by maximizing the
'ng S|gnal-leyel criteria, e.g., l:_)y _rn_lnlmlzmg_the beamfprmerSNR of the beamformer outputs. A delay and sum beam-
qutput covariance or by maximizing the signal-to-noise "%ormer can be obtained based on a direction-of-arrival (DOA)
tio (SNR). Such s_lgr_mal-level criteria d.o not always Uaastimate and a plane wave assumption. These beamform-
angeettha: thetpptlmlze: beaqutrmer ISR the lilest f(;r NOISErs are estimated by optimizing signal-level criteria, there-
o ush ad ﬁma 'E speec recodg?l on. ¢ ecen E)/ a ;ew Hore ASR systems that perform ASR after the beamforming
proacnes have been proposed lor performing beamiorming., completely excluded from consideration. Although these
W't.h a speech recognltlon-le_vel criterion. _These approac_he&eamformers are effective for ASR, their optimality for ASR
train beamformers along with an acoustic model by using. Lot be guaranteed with such signal-level criteria.

multichannel training data and a parallel corpus of noisy A few approaches have recently been proposed for opti-
and clean data. This paper proposes a novel approach far._. . d .
L —mizing beamformers with an acoustic model [3, 4, 5]. Sainath
estimating the beamformer for every test utterance with a -
speech recognition-level criterion. We use an unsupervis & al. have proposed a convolutional neural network (CNN)-
agoustic mogel adaptation scher.ne to ontimize ou? beafng_ased approach, where a multichannel beamforming filter is
o P ) . Pt ... Implemented as a convolutional filter in a CNN and connected

former. Specifically, we first obtain decoding results with
L .S to subsequent neural networks. The overall network can be
an initialized beamformer, and then we optimize our beam- . . . .
former using back propagation to minimize the cross entro regarded as a large acoustic model, whose input is a mult-
using back propag . P¥hannel time domain signal, and whose output is a hidden

between the first-pass decoding results and actual netwo

. . . arkov model (HMM) state posterior. The acoustic model is
outputs. With this approach, our beamformer can be traine 1oined on trainina data by minimizing the cross entrooy be-
to discriminate hidden Markov model states more clearly, 9 Y 9 Py

. ween correct labels and acoustic model outputs. Similarl
for every test utterance. Experimental results show th P Y,

. : iao et al. proposed deep beamforming networks [5] that es-
our beamformer outperforms a beamformer designed with S .
. o imate the beamforming filter from a generalized cross corre-
signal-level criterion.

lation (GCC) [6] between microphones. The deep beamform-
Index Terms— Beamforming, automatic speech recogni-ing networks are jointly trained with an acoustic model by
tion, acoustic model adaptation minimizing the cross entropy. While these approaches allow
us to perform beamforming with the cross entropy criterion,
1 INTRODUCTION they_ glo not adapt the beamforme_r to unseen environments. In
addition, these approaches require a parallel corpus of clean
This paper deals with beamformer estimation for noise roand noisy data to perform multi-task learning [4] or to train
bust automatic speech recognition (ASR). Beamforming is ¢he beamformer part of neural networks in advance [5].
well-known technique for background noise suppression and This paper proposes a technique for beamformer estima-
has been shown to be a promising approach for noise robusibn for test environments, where the estimation is performed
ASR[1, 2]. By applying a linear filter to multichannel signals with the cross entropy (CE) criterion. We recently proposed
recorded by a microphone array, a beamformer can enhaneefront-end optimization method with the CE criterion [7],
a target speech signal and helps us to achieve more accurathere denoising was achieved with time-frequency masking.
ASR. In contrast to our previous work, this paper applies our front-
To construct the beamforming filter, we need to desigrend optimization method to beamforming, which we have
a criterion to be optimized. For example, a minimum vari-shown to be more effective for noise robust ASR than time-
ance distortion-less response (MVDR) beamformer can b&equency masking [1].
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We employ an unsupervised acoustic model adaptatio Frame-level labels obtained

scheme (see, e.g., [8]), but the beamformer speech enhant with initial decoding pass
ment parameter for multichannel observation is optimized un

like the acoustic model adaptation. In particular, we first per

form decoding with an initialized beamformer and obtain su- ‘ ross ENtropy

pervision binary labels. Then we perform back propagatior

to minimize the cross entropy between the supervision bi —
nary labels and actual acoustic model outputs. The bean

former is estimated for every test utterance to enable the su

sequent acoustic model to better discriminate the HMM stat Parameters
posterior. The number of estimated parameters for the time fixed
invariant beamformer is relatively small, which helps us to

avoid overfitting to the errorful supervisions. Finally, we per-

form decoding with the estimated beamformer, and obtain th =
final decoding results. Our experimental results show the ef

fectiveness of our proposed beamformer estimation in term Beamforming filters beamformer
of word error rate (WER) compared with an MVDR beam- ©ptimized 1
former estimated with a signal-level criterion. T T "* T T T bean:g:ﬁ'i'ﬁzimers

:

Acoustic Model

Feature Extraction

Back Propagation

2> BEAMFORMING Multichannel Observation

This section briefly describes a beamformer in the time- Fig. 1. Overview of our beamformer estimation.
frequency domain. Leps ., denote then-th microphone _
signal at frequency and timet. By using vector notation the 3.1. Overview

signals from allM microphones can be represented as Figure 1 shows an overview of our proposed beamformer es-
T timation method, which is based on a standard unsupervised
Yo = Wrets- - ypeml (1) acoustic model adaptation approach. First, we initialize the

where the superscrifif denotes non-conjugate transposition, P8@mformer filter by using an existing beamforming method
The beamformer, which is represented as a linear filtel© |€verage recently developed powerful beamforming ap-

in the frequency domain, can be described by using vectdiroaches. Second, we perform decoding with the initialized
notation as beamformer to obtain supervision labels for beamformer

adaptation. The beamforming and feature extraction are re-

Wy = [wy1,... 7wf7]\/[]T. (2) formulated as computational layers of neural networks, and
connected to the acoustic model. The beamforming filters
are finally optimized for every test utterance by using back
propagation, which minimizes the cross entropy between the
supervision labels and acoustic model outputs. This beam-
former estimation allows the beamforming filters to take
where the superscripi denotes conjugate transposition. account of the subsequent recognition process, and the filters

The key to successful beamforming is the accurate estare optimized to make the recognizer better discriminate the
mation of the filterw, for every test environment. Various HMM state posteriors. The optimized beamformer is used to
criteria have been proposed for beamformer estimation, mogteld the final deciding results.
of which are designed in the audio signal space. The aim
of this study is to estimate the beamformer with the speect}, 2 Beamformer initialization
recognition-level criterion for every test utterance. -

An enhanced speech sigrigl, can be obtained by multiply-
ing the filter by the observed signal as

gf.t = W.I;ny,h (3)

We can use any existing beamformer estimation approach to
obtain initial values for the beamforming filters, which are
subsequently optimized with our proposed method. Recently,
In this section, we first provide an overview of our proposedseveral beamforming approaches have been shown to yield
beamformer estimation, which comprises beamformer inigreat performance gains [1, 2, 9], even though the back-end
tialization, first-pass decoding and beamformer estimation byecognizer is not considered in the beamforming front-end.
back propagation. Then we describe in detail these three stejdge can leverage these existing approaches by using the es-
of our proposed method. We also provide an interpretatiotimated filters as the initial values, and this actually yielded
of our proposed method in comparison with existing acoustibetter performance in our experiments (see section 4 for more
model adaptation approaches. details).

3. PROPOSED BEAMFORMER ESTIMATION
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3.3. First-pass decoding to obtain supervision labels be calculated with Eqg. (3) and

To perform beamformer adaptation with the CE criterion, we
need to obtain supervision labels. We follow the unsuper- & =FeatureExtract(s), (6)
vised acoustic model adaptation scheme to obtain the super- [ =AcousticModel (%), (7)
vision labels (see, e.g., [8] for details of deep neural network

(DNN) adaptation). We first perform forwarding with the ini- \yheres denotes extracted featureSeature Extract(s) de-
tialized beamformer and an acoustic model trained in advanGggtes a function for extracting features from the enhanced sig-
to obtain estimated HMM state posteriors. The posteriors anfg|s, and it is usually parameterized by fixed parameters (e.g.
a language model are used to obtain initial decoding resultfyg.mel feature extraction and feature normalization by affine
i.e, a sequence of estimated words. Then, we perform forcagansform). AcousticModel(#) denotes an acoustic model
alignment and obtain a supervision label corresponding to ey computing HMM posteriors from the acoustic features.
ery time frame. Following this scheme, obtained superviThe acoustic model is trained in advance by using training
sion labels are different from the acoustic model outputs iyata. The overall computation process can be regarded as a
the following two respects; the supervision labels are refineqSlrge model that outputs the HMM state posteriors from mul-
by the language model, and the supervisions are binary vajichannel observations.

ues while the acoustic model outputs are continuous values g, Egs. (3), (6) and (7), the gradient of the CE with re-

from zero to one. Minimizing the CE between the Supervi-gnect 1 the conjugate of the beamforming filter can be com-
sion labels and the acoustic model outputs makes the aCO”SBEted by the chain rule as
model outputs closer to binary values, which are refined by

the language model. Even though adapting too many parame- oLz, [t) oc(s, Zt) 03, 93,

ters would result in reproducing the same decoding results as . - - =, (8)
those of first-pass decoding, we retrain just the beamformer owy Oty 95 O

filters, which can produce enhanced signals only by focusing X

on a specific direction. This constraint of the retrained paramwhere %;’;;t can be described as

eters, i.e., beamforming filters, helps us to avoid overfitting to

the errorful supervisions and to obtain performance gain by i T

forwarding again with the adapted beamformer. 8sz =Yre 9)
3.4. Back propagation for beamformer estimation from Eq. (3). %{lr) can be computed because the gradi-

Our beamformer filters are retrained based on the gradient dent is used in the acoustic model trainingff—t can also be
scent algorithm by performing back propagation with the CEcomputed because the feature extraction is described by basic
criterion. Our objective functiorC(I*”, ), the CE between computations, i.e., addition, multiplication, the log function
the supervision labels and the acoustic model outputs, can @d the power operation.

described as

L,y =YL,y 3.5. Interpretation of proposed method
¢ R The proposed adaptation scheme is related to other adapta-
= Z CrossEntropy(l;°, 1), (4) tion approaches such as the DNN retraining approach inves-
t tigated in [10], the linear input network (LIN) [11], learning

o . . ..._hidden unit contributions (LHUC) [12], and feature-space dis-
Where.l‘s” is the l-Qgst binary Iabgls generated by the InltlaIcriminative linear regression (fDLR) [13]. Indeed, when con-
de‘?Od'”g pass, a_\an|s the a_COUSt'C model outputs, i.e., the sidering the combination of the beamformer and the acoustic
esnmated posteriors. The filter can be updated based on the 1| 2< 5 single neural network, the approach becomes sim-
gradient descent algorithm as ilar to retraining the parameters of the first layer, LIN with a

. diagonal linear transformation matrix, or LHUC applied to
Wy Wy — al Z 6£(lf”*, lt), (5) the input layer. Th_e major difference is_ that the proposed
T4 ow} approach operates in the complex domain, whereas LIN and
other adaptation approaches are usually employed after the
wherew} anda denote the conjugate of the filter; and the  feature extraction process. By performing adaptation in the
learning rate respectively. complex domain and on multiple channel signals, we are able
Now we reformulate beamforming and feature extractiorto exploit the spatial information. We will investigate the
as neural network layers to calculate the gradient with respecombination of our approach with other adaptation techniques
to the beamforming filter. The acoustic model outputgn  in future work.
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Table 1. WERSs on the real data in the development and evaluation sets.

systems dev eval
avg || bus | caf | ped| str || avg || bus | caf | ped | str
w/o speech enhancement 10.33| 15.93| 8.61| 7.08| 9.72 | 16.80| 24.30| 18.01| 12.91| 11.97
Proposed beamformer w/ ref-mic init. 10.10|| 15.46| 8.55| 6.86 | 9.53 || 16.33 | 23.78| 17.61| 12.28 | 11.65
CGMM-MVDR beamformer [1, 2] 5.97 8.84 | 488| 4.43| 5.72| 9.06 || 12.30| 7.58 | 852 | 7.83
Proposed beamformer w/ CGMM-MVDR inif, 5.79 || 8.28 | 485| 4.40| 5.62 || 889 | 11.95| 7.45 | 831 | 7.84

4. EXPERIMENTAL EVALUATION Table 2. Experimental conditions.
Sampling frequency 16 kHz
4.1. Settings Frame length 25ms
We conducted experiments using the CHIME-3 corpus [14] Frame shift 10 ms
to evaluate the effectiveness of our proposed beamformer Window function Hanning

in terms of WER. The corpus consists of read utterances,

that were recorded with six microphones attached to a tabl§i9nals. The initial beamformer was obtained as the MVDR
device in four different environments: public tranportationPe@mformer that was parameterized by the estimated steering

(bus), caé (caf), pedestrian area (ped), and street junctioNeCtor- The beamformer was updated 30 times with Eq. (5)

(str). The sentences were taken from the WSJO corpus. THY USINg an utterance-batch processing approach. The learn-

o .
training set comprises 1600 real and 7138 simulated uttef0d ratea was set atl x 10 3for the reference microphone
ances. The audio data from all six microphones were uselfitialization, and set a x 10° for the masking-based beam-
for training, which amounts to about 108 hours. The devel_former initialization. These learning rates were tuned using

opment and evaluation sets consist of 1640 and 1320 reljje development set. Other experimental conditions were set

utterances, respectively. as in Table 2.
In our experiments, we performed speaker independent We compared the performance of the proposed method

decoding by using a deep convolutional neural networRN'th the beamformer obtained with the _sigpa!-le\(el criterion
(CNN) acoustic model [1, 15, 16] and a recurrent neuralls 2] that was used for the beamformer initialization.
network (RNN) language model [17, 18]. The CNN con-
sisted of five convolution layers and two max-pooling layers4.2. Results
where all the layers contained 180 feature maps. The laJiable 1 shows the WERs obtained with the proposed and
convolution layer was followed by two fully connected lay- competing methods. With the reference microphone ini-
ers with 2048 units and a softmax layer. The softmax layetialization, our proposed beamformer estimation achieved a
contained 5976 units, i.e., context-dependent HMM statedVER improvement compared with the WER obtained with-
The RNN language model used 10 classes and accommout speech enhancement, while its improvement was limited
dated 250 units in the hidden recurrent layer. The inputs tand smaller than that obtained with the MVDR beamformer.
the acoustic model comprised 80-dimensional log mel-filteWhile the MVDR beamformer greatly reduced the WERs
bank channel outputs, where the filter bank outputs at 19 timfor all the environments, our proposed beamformer estima-
frames were concatenated as an input for a center time framigon yielded a further performance gain by using the MVDR
Utterance-wise mean normalization was performed after theeamformer for our beamformer initialization. These re-
log mel-filter bank feature extraction, which was followed sults shows the effectiveness of our proposed beamformer
by feature normalization using the first- and second-ordeestimation.
statistics obtained from all the training data.

We considered two methods for our beamformer initial- 5. CONCLUSION
ization. One is called reference microphone initialization, )
where all beamformer components are initialized to extracf NS Paper proposed a novel approach for unsupervised beam-
a single-channel observation recorded with a reference mformer estimation with a CE criterion. We first performed
crophone. The other initialization method utilizes the unsuinitial decoding to obtain the supervision labels with the ini-
pervised masking-based beamformer described in [1, 2]. Ifj@lizéd beamformer. Then, our beamformer was estimated
particular, we first performed time-frequency mask estimatiorfo" €very utterance by minimizing the CE between the super-
based on a complex Gaussian mixture model (CGMM) by/iSion labels and the acoustic model outputs. The. estllm.ated
maximizing the log-likelihood criterion [19]. Then, the steer- beamformer enabled th_e acoustic model to better discriminate
ing vector of the target speaker was extracted as the eigenvef® HMM states. Experimental results showed that our beam-
tor associated with the maximum eigenvalue of the covarianci@rmer outperformed the conventional beamformer obtained
matrix of the target speech, where the covariance was cafvith a signal-level criterion in terms of WER for the CHIME-

culated with the estimated masks and multichannel observes€valuation set.
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