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ABSTRACT 
 

Continuous prediction of dimensional emotions (e.g. arousal and 

valence) has attracted increasing research interest recently. When 

processing emotional speech signals, phonetic features have been 

rarely used due to the assumption that phonetic variability is a 

confounding factor that degrades emotion recognition/prediction 

performance. In this paper, instead of eliminating phonetic 

variability, we investigated whether Phone Log-Likelihood Ratio 

(PLLR) features could be used to index arousal and valence in a 

pairwise low/high framework. A multi-stage staircase regression 

(SR) framework which enables fusion at three different stages is 

also investigated. Results on the RECOLA database show that 

PLLR outperforms EGEMAPS features for arousal and valence. 

Interestingly, long-term averaged PLLR proved to be more robust 

and emotionally informative than local frame-level PLLR, which 

contains more phoneme-specific information. Within the multi-

stage SR framework, PLLR yielded an 8.2% and 11.6% relative 

improvement in CCC for arousal and valence respectively, 

showing great promise for including phonetic features in emotion 

prediction systems. 

Index Terms — Phone log-likelihood ratio, staircase 

regression, relevance vector machine, emotion prediction 

 

1. INTRODUCTION 
 

Continuous prediction of emotion dimensions such as arousal and 

valence at frame basis has become an emerging area of research 

recently within the affective computing community [1]. The 

dimensional representation of emotions is more advantageous than 

categorical representation such as anger and neutral for capturing 

complex and subtle variations in emotional states [2]. In line with 

this popularity, annual audio-visual emotion challenges [3], [4], [5] 

were held to motivate and drive research towards more robust and 

effective systems, among which audio features, especially spectral 

and prosodic features [6], have proved critical. 

However, the frame-level acoustic features adopted as baseline 

features for these challenges, contain phonetic variability, arising 

from variations in short-term features spanning different 

phonemes. This variability has been shown to have a negative 

impact on emotion recognition systems [7], [8]. Attempts to 

mitigate phonetic variability include the calculation of functionals 

(long-term statistics of short-term features) [9], lexical 

normalization [10], and examination of acoustic features from 

specific phonemes or phoneme classes [11], [12], [13], [14]. 

Moreover, there are multiple emotion recognition systems that 

explicitly model emotional phonemes, showing better performance 

compared with phoneme independent systems [15], [16], [17]. The 

majority of aforementioned studies have proceeded from an 

approach of segmenting speech on a per-phoneme basis and then 

applying machine learning. However, to the best of our knowledge, 

no studies have investigated direct usage of phonetic features for 

speech based emotion recognition.  

A promising approach for prediction that was originally 

proposed for depression speech is known as Gaussian Staircase 

Regression [18]. The staircase regression (SR) approach, which 

allows pairwise comparison of low and high classes, has been 

shown effective for depression [19], [20] and more recently for 

emotion prediction [21]. Considered from a more general 

perspective, the pairwise comparison basis of SR suggests that 

low-high comparisons of arousal or valence could be made on a 

per-phoneme basis, and in this context it is of interest to consider 

features that contain phone-specific information, i.e. to make 

frame-by-frame comparisons between low and high 

arousal/valence on a per-phoneme basis.  

In this paper, we investigate direct utilization of phonetic 

features, i.e. Phone Log-Likelihood Ratio (PLLR), in a proposed 

multi-stage SR framework for continuous emotion prediction.  

 

2. RELATED WORK 
 

Phonetic variability is notorious for its impact on speech emotion 

recognition. For instance, it has been suggested in [10] that 

phonetic variability of lexical content dominates acoustic features 

rather than speaker and emotion variability in emotional speech. 

Three common approaches have been adopted to remove the 

variability. Among the most widely used method is to calculate 

functionals, i.e. long-term statistics, of short-term features, thereby 

being less sensitive to their local variations caused by phonemes. A 

second approach is to explicitly compensate the variability via 

normalization, e.g. whitening transformation for each phoneme in 

[10]. A third common approach is to segment emotional speech 

into phonemes or phoneme classes, from which acoustic features 

are extracted and processed on a per-phoneme/class basis. It was 

found that vowels are more conducive to emotion classification in 

[11], [12], [13], while spectral features extracted from consonants 

are more effective in [14].  

Apart from this, there are some studies investigating phoneme-

level emotional models, exploiting the discriminative nature of 

some phonemes [16], [17], [22]. For example, emotion-specific 

vowels of Mexican Spanish speech were modelled by HMMs and 

the number of emotional vowels was counted [16]. Most of the 

abovementioned studies were generally done for classification of 

categorical emotions such as anger and happiness. 

For dimensional emotions, in [17], an Automatic Speech 

Recognition (ASR) engine was used to generate a phonetic 

transcription, based on which phoneme-level emotion models were 

built for binary classification of emotion dimensions. A recent 

investigation found discriminative capabilities in phonetic 

syllables, from which acoustic features were extracted, achieving 
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state-of-the-art performance for predicting emotion dimensions 

using SVR at turn-level on the VAM and SEMAINE corpora [15]. 

Phonetic information has been suggested to be emotionally 

discrimative in previous studies. However, to the best of our 

knowledge, no studies have investigated the direct use of phonetic 

information for emotion prediction on a per-frame basis. Previous 

studies have only evaluated acoustic features within phonemes, 

which may be incapable of capturing the phonetic description of 

emotional speech [23]. We speculate that features based on 

phonetic information could be complementary to existing acoustic 

features, because they may carry emotion-related information 

different from that of spectral and prosodic features. Among the 

most popular phonetic features are the Phone Log-Likelihood 

Ratio (PLLR) features, which are widely used in state-of-the-art 

language identification systems, e.g. [24].   

The Staircase Regression framework was first proposed for 

depression prediction in [18], where data corresponding to 

intervals of the rating scale were grouped into several pairs of low-

high classes, and the log mean likelihood ratio (LMLR) between 

the low and high partition was calculated. The LMLR from each 

low-high class pair was then used in regression modeling, to 

predict depression BDI scores. Relevance Vector Machine 

Staircase Regression (RVM-SR), based on the same idea, was 

found to be effective for depression prediction [20] as well as more 

recently for emotion prediction [21]. Staircase methods in general 

have been found to effectively exploit complementary information 

using fusion [21], which may be helpful herein for integrating 

PLLR features for continuous emotion prediction. 

 

3. SYSTEM OVERVIEW 
 

3.1 System Overview 

In this paper, only the AVEC baseline EGEMAPS features and the 

proposed PLLR features were considered. For both regression and 

classification modeling, Relevance Vector Machine (RVM) was 

selected due to its effectiveness for emotion prediction [25]. While 

Support Vector Machine/Regression yields a sparse representation 

of instances, RVM maintains the sparse representation for features. 

The proposed system (Fig. 1) enables fusion at three different 

levels, namely feature-level, classifier-level and score-level.  

 
Fig. 1. Proposed emotion prediction system (after [20]) 

3.2. Phone Log-Likelihood Ratio (PLLR) Feature 

Given a phone decoder with M phonemes, each of which has been 

modelled by one Hidden Markov Model (HMM) with S states, the 

posterior probability for each state s (1 < s < S) of each phoneme 

model m (1 < m < M) at each frame t is denoted as 𝑝𝑡,𝑠(𝑚). Then 

the posterior probabilities of each phoneme are summed across all 

states in (1) before calculating the PLLR using (2) [24]: 

 𝑝𝑡(𝑚) = ∑ 𝑝𝑡,𝑠(𝑚)

∀𝑠

 (1) 
 

 

 𝑃𝐿𝐿𝑅𝑡(𝑚) = log
𝑝𝑡(𝑚)

1
(𝑀 − 1)

∑ 𝑝𝑡(𝑗)∀𝑗≠𝑚

 (2) 

In (2), the numerator represents probability of phoneme m, 

whereas the denominator denotes the average probability of all 

phonemes exclusive of phoneme m. The ratio between the two 

provides a probabilistic measure for the presence of phoneme m. 

Taking the log of the ratio enables the measure to be more 

Gaussian-distributed and less bounded [26]. In the emotion 

prediction context, PLLR features (i) provide an indication of the 

most relevant phoneme for a given frame (allowing phoneme-

specific modelling) and (ii) as a feature set provide a kind of 

‘positioning’ of the current frame among all phonemes. Similarly, 

a bag-of-audio-word approach has recently been proposed to 

capture the ‘positioning’-like information in the codebook, where 

the entire acoustic space of low-level descriptors is clustered [27]. 
 

3.3. Multi-Stage Staircase Regression 

3.3.1. Relevance Vector Machine for Regression and Classification 

A general form for RVM regression can be found in (3), where 

RVM searches for a weight for each feature dimension [28]. 

 𝑦(𝒕∗|𝒙∗, 𝒘) = 𝒘𝑇𝝓(𝒙∗) + 𝝐, 𝝐~𝒩(0, 𝜎2)   (3) 

𝝐  is the trained noise and 𝑡  is the predicted score. To enforce 

sparsity on the weights 𝒘, the weights are given a prior distribution 

of zero-mean Gaussian, i.e. 𝑤𝑘~𝒩(0, 𝛼𝑘
−1), 𝑘 ∈ [1, … , 𝐾], where 

K is the feature dimensionality. 

During the training process, RVM aims to maximize the 
posterior probability of all parameters given the training data. 

 𝑝(𝒘, 𝜶, 𝜎2|𝒕) = 𝑝(𝒘|𝒕, 𝜶, 𝜎2)𝑝(𝜶, 𝜎2|𝒕) (4) 

The first term on the right hand side specifies normal 

distributions over the weights 𝒘, controlled by 𝜶, 𝜎2. Accordingly, 

we maximize the posterior probability 𝑝(𝜶, 𝜎2|𝒕), which can be 

further reformulated as a type-II maximum likelihood problem in 
(5) via Bayes’ rule.  

 (𝜶𝑀𝑃, 𝜎𝑀𝑃
2 ) = argmax

𝜶,𝜎2
ℒ(𝜶, 𝜎2) = argmax

𝜶,𝜎2
𝑝(𝒕|𝜶, 𝜎2) (5) 

After determining 𝜶𝑀𝑃, 𝜎𝑀𝑃
2 , the Gaussian-distributed weights 

𝑝(𝒘|𝒕, 𝜶𝑀𝑃, 𝜎𝑀𝑃
2 )~𝒩(𝝁, Ʃ) are sparse, because the majority of 𝛼𝑖 

tend to be infinity, i.e. zero for the corresponding weights 𝑤𝑖 . 

Given test features 𝒙∗, predictions become: 

 𝑦(𝒕∗|𝒙∗, 𝒘) = 𝝁𝑇𝝓(𝒙∗) (6) 

Similarly to RVM regression, RVM classification searches for 

the most relevant weights for each single feature, but there is no 

error term 𝝐 in (3), i.e. there is no parameter 𝜎2. Introduction of the 

sigmoid function to the outputs 𝒮(𝑦) = 1 (1 + 𝑒−𝑦)⁄ leads to a 

Bernoulli distributed likelihood function, and therefore training of 

a RVM classifier involves maximizing the posterior probability 

𝑝(𝒘|𝒄, 𝜶)  using Laplace’s method [28]. Given test features 𝒙∗ , 

classification becomes 

 𝑝(𝑐∗|𝒙∗, 𝒘) = 𝒮(𝑦(𝒙∗, 𝒘𝑀𝑃)) =  𝒮(𝒘𝑀𝑃
𝑇 𝝓(𝒙∗))  (7) 

where 𝑐 is the emotional class and 𝑝(𝑐∗|𝒙∗, 𝒘) can be regarded as a 

probabilistic output for binary classification.  
 

3.3.2. Relevance Vector Machine Staircase Regression 

The idea behind RVM-SR is to make pairwise comparisons 

between different low-high partitions, and to incorporate this 

information into regression modeling. Thus, it is a combination of 

multiple RVM classifiers and regression.  
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In RVM-SR, firstly emotion ratings are evenly partitioned into 

N partitions based on percentiles of arousal/valence scores on 

training data. Data corresponding to the N partitions are then 

grouped into low-high pairs to train different RVM classifiers 𝐶𝑙
ℎ, 

where h denotes partitions of data from high arousal/valence, 

whilst l denotes low arousal/valence. For instance, 𝐶𝑙=1
ℎ=2:𝑁 denotes 

a classifier that is trained with data from the 1st partition is 

considered as the “low” class and data from the 2nd to Nth partitions 

are considered as the “high” class. The existing SR [21] therefore 

trains N-1 classifiers, as seen in (8).  

Staircase 1: 𝐶𝑙=1:𝑖
ℎ=𝑖+1:𝑁 , 𝑖 ∈ [1,2, … , 𝑁 − 1] (8) 

Apart from (8), we proposed in this paper three additional 

types of staircases. The Staircase 2 starts with comparing the most 

extreme cases where the data with the lowest emotion ratings are 

considered as “low”, whereas data with the highest ratings are 

considered as “high”. The Staircase 3 also starts with comparing 

the most extreme cases, but adding more data for training as 

proceeds. The Staircase 4 compares high and low classes separated 

by the mean of the emotion ratings for small i, but removing the 

extreme data partitions for larger i. 

Staircase 2: 𝐶𝑙=𝑖
ℎ=𝑁−𝑖+1, 𝑖 ∈ [1,2, … , 𝑁/2] (9) 

 

Staircase 3: 𝐶𝑙=1:𝑖
ℎ=𝑁−𝑖+1:𝑁, 𝑖 ∈ [1,2, … , 𝑁/2] (10) 

 

Staircase 4: 𝐶𝑙=𝑖:𝑁/2−1
ℎ=𝑁/2+1:𝑁−𝑖+1

, 𝑖 ∈ [1,2, … , 𝑁/2] (11) 

After training all classifiers, the probabilistic outputs 

𝑝(𝑐∗|𝒙∗, 𝜶𝑀𝑃) from equation (7) were used for RVM regression 

modeling. Unlike the existing type of staircase, the three proposed 

staircases can be complementary because they contain information 

covering the most extreme cases and the most confusing cases. 
 

4. EVALUATION 
 

4.1. Database 

Experiments in this paper were evaluated using the AVEC2016 

database [5]. The AVEC 2016 database was selected from the 

Remote Collaboration and Affective Interaction (RECOLA) corpus 

[29]. It is a spontaneous multimodal corpus collected in scenarios 

where two French speakers complete a survival task together 

through a video conference. This database was chosen because it is 

large and has been widely used and allows comparison with other 

work for predicting arousal and valence. There are recordings of 5-

minute length from 27 subjects, which were evenly divided into 

training, development and test partitions. As we did not have 

access to gold standard ratings from the test set data, we adopted 

only the training and development partition. In the database, frame-

level annotations of arousal and valence are provided at every 40 

milliseconds per file. 
 

4.2. Experimental Settings 

For PLLR feature extraction, we used the BUT phoneme 

recognizer (Hungarian) [30] to calculate 59-dimensional PLLR at 

every 40 milliseconds to align with the gold standard emotion 

ratings. Delays were compensated by shifting the features forward 

in time. Training data were scaled into the range [0, 1] and scaling 

coefficients were used to normalize test data, as per [21]. The 

iteration number of RVM classifier and regressor was optimized on 

the development partition with maximum 150 iterations. In RVM-

SR, the distribution of ratings on training data was evenly divided 

into 20 partitions for arousal and valence, selected empirically. We 

adopted the same post-processing including smoothing, centering 

and scaling as in [5]. The evaluation measure for emotion 

prediction is concordance correlation coefficient (CCC) [4], [5], 

which combines correlation coefficient and squared mean error.  
 

4.3. Performances of PLLR features 

This section compares the 25-dimensional EGEMAPS low-level 

descriptors, extracted using the openSMILE toolkit [31], with 

short-term PLLR features for emotion prediction using RVM. The 

delays were optimized, 2.4 seconds for arousal and valence for 

both feature sets. Post-processing was not included in this initial 

experiment. In Table 1, it is shown that directly applying phonetic 

features outperforms the commonly used acoustic features for 

predicting both arousal and valence. 

Table 1: Performance in CCC for short-term EGEMAPS and PLLR 

 Arousal Valence 

EGEMAPS LLDs 0.384 0.122 

Short-term PLLR 0.441 0.124 
However, the short-term PLLR might suffer from frame-to-

frame variability as the short-term acoustic features do. To 

examine the effect of this variability, we calculated 5 functionals of 

the short-term PLLR features, i.e. mean, standard deviation, 20% 

percentile, 80% percentile and the range of 20%-80% percentiles, 

leading to 295-dimensional features with different window sizes at 

40ms basis. In addition, results from a smoothed PLLR feature set 

via mean filter with different window sizes are presented in Fig. 2.  

 
Fig. 2. Smoothed PLLR vs 5 functionals calculated from PLLR 

There are two interesting observations from Fig. 2. The first is 

the smoothed PLLR features performed equally well when 

comparing with 5 functionals. This suggests that the improvement 

in performances from functionals mainly derives from the 

smoothed mean of the PLLR features. The second observation is 

the boost in performance when considering larger window sizes for 

both arousal and valence. This suggests that frame-to-frame 

variability in the short-term PLLR features can be mitigated in a 

similar manner to other functional features. 

To look more closely into the differences between the short-

term PLLR (referred to as “local”) and the smoothed PLLR using 

7s (referred to as “global”), a RVM classifier 𝐶𝑙=1
ℎ=𝑁 was trained to 

identify the most relevant phoneme, which was /O/ and /s/ for 

arousal and valence respectively. The distributions for two classes 

are shown in Fig. 3.  

  

Local 
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Fig. 3. Distributions (around 7000 frames) of short-term and long-

term PLLR for /O/ of high and low arousal and for /s/ of high and 

low valence, across all 9 speakers on training data.  

It can be clearly seen that the ‘global’ (long-term) PLLR 

features are more emotionally discriminative than the ‘local’ 

(short-term) PLLR features for both arousal and valence. The good 

discrimination of /O/ is consistent with previous literature showing 

that vowels are effective for emotional speech [11], [12], [13].  
 

4.4. RVM SR vs RVM 

Given the effectiveness and discriminative effect of the PLLR 

features, we compared the 88-dimensional EGEMAPS features and 

the 59-dimensional smoothed PLLR features using Support Vector 

Regression (SVR), RVM and RVM-SR, alongside with fusion of 

the two feature sets. Post-processing was included in all systems. 

The PLLR features were smoothed using a mean filter of 7s. The 

delays were optimized for the EGEMAPS (2.8 secs for arousal and 

2.4 secs for valence) and PLLR features (2.8 secs for arousal and 

4.4 secs for valence). Notice that in RVM-SR (Staircase 2) with 20 

partitions, only 10 probabilistic outputs from 10 low-high 

arousal/valence classifiers were used for regression training. 

Table 2: Comparison of EGEMAPS and PLLR features using SVR, 

RVM and RVM-SR in CCC. Feature-level fusion using RVM was 

also compared with fusion at different stages using RVM-SR. 

  Arousal Valence 

SVR  
EGEMAPS (Baseline [5]) 0.796 0.455 

PLLR 0.838 0.438 

RVM 

EGEMAPS 0.794 0.430 

PLLR  0.821 0.473 

feature-level fusion  0.848 0.502 

RVM-SR 
(Staircase 2) 

EGEMAPS 0.794 0.286 

PLLR  0.846 0.508 

feature-level fusion  0.860 0.463 

classifier-level fusion  0.849 0.437 

score-level fusion  0.861 0.500 

The SVR results were generated using scripts provided by the 

challenge [5]. It is shown in Table 2 that RVM with EGEMAPS 

features has comparable performance to the baseline in [5] for 

arousal while being slightly lower for valence. The phonetic PLLR 

features outperformed EGEMAPS features for arousal using both 

RVM and SVR, and for valence using RVM. This signals the 

promise for inclusion of phonetic features for emotion prediction.  

For EGEMAPS features, applying RVM-SR performed equally 

to RVM for arousal but gave much lower valence results. By large 

contrast, RVM-SR with PLLR features produced further 

improvements over RVM, achieving similar performances as 

feature-level fusion of EGEMAPS and PLLR using RVM. This 

performance was achieved using only 10 probabilistic outputs from 

RVM classifiers compared with 147-dim concatenated features. 

This confirms the effectiveness of RVM-SR for exploiting the 

discriminative capability of phonemes, as shown in Fig. 3.  

However, despite slight improvements for arousal, fusion of 

the two feature sets at the three different stages within RVM-SR 

(Staircase 2) did not provide any significant differences in valence 

results. This may not be surprising however, given that EGEMAPS 

gave a weak CCC of 0.286 for valence in RVM-SR (Table 2).  

A comparison of the four proposed staircases was conducted in 

Fig. 4. Again, the EGEMAPS and PLLR features were fused at 

three different levels. It can be seen that the proposed additional 

staircases performed comparably or better than Staircase 1, 

especially for Staircase 2, which allows more discriminative data 

for training high vs low classifier pairs.  

 
Fig. 4. Comparison of different types of staircases. The red dashed 

line denotes the baseline performances in [5], while the black 

dashed line represents feature-level fusion of EGEMAPS and PLLR 

using RVM without staircase regression.  
 

5. CONCLUSIONS 
 

Direct application of phonetic features has not been explored to 

date in speech emotion recognition; however by introducing Phone 

Log-Likelihood Ratio (PLLR) features to predict arousal and 

valence on a frame-by-frame basis, they show great promise, 

opening new research possibilities in this area. 

Short-term and long-term PLLR features were evaluated, and 

the latter showed significant improvements due to the mitigation of 

frame-to-frame variability. In the proposed RVM-SR framework, 

PLLR features achieved the best valence performance of 0.508, 

and best arousal performance of 0.861 when fusing EGEMAPS 

features, yielding an 8.2% and 11.6% relative improvement in 

CCC over single-feature systems [5] for arousal and valence 

respectively. This suggests that the discriminative power of phone 

LLR features are well exploited in proposed RVM-SR framework. 

Moreover, this confirms our speculation that PLLR features are 

complementary to widely-used acoustic features. Future work 

involves further exploiting the discriminative power of phonemes 

by constructing staircase classifiers for each phoneme for 

continuous emotion prediction. 
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