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ABSTRACT

Conventional feature-based classification methods do not ap-
ply well to automatic recognition of speech emotions, mostly
because the precise set of spectral and prosodic features that
is required to identify the emotional state of a speaker has not
been determined yet. This paper presents a method that oper-
ates directly on the speech signal, thus avoiding the problem-
atic step of feature extraction. Furthermore, this method com-
bines the strengths of the classical source-filter model of hu-
man speech production with those of the recently introduced
liquid state machine (LSM), a biologically-inspired spiking
neural network (SNN). The source and vocal tract compo-
nents of the speech signal are first separated and converted
into perceptually relevant spectral representations. These rep-
resentations are then processed separately by two reservoirs
of neurons. The output of each reservoir is reduced in dimen-
sionality and fed to a final classifier. This method is shown
to provide very good classification performance on the Berlin
Database of Emotional Speech (Emo-DB). This seems a very
promising framework for solving efficiently many other prob-
lems in speech processing.

Index Terms— speech emotion recognition, source-filter
model, liquid state machine, reservoir computing

1. INTRODUCTION

Speech is a fundamental means of communicating not only
words, but also a vast range of human emotions. Conse-
quently, speech processing applications, such as human-
machine interfacing and speech recognition, could benefit
from the introduction of a reliable method for automatic
recognition of human emotions through speech.

Conventional speech emotion recognition methods con-
sist of a feature extraction step followed by a classifier. Vari-
ous spectral and prosodic features can be used [1]. Finding the
“best” set of features, namely, one that is both complete and
compact, is a critical step which has a considerable impact on
the performance of the system. State of the art conventional
methods mostly differ in their choice of features and of clas-
sifier type [2, 3].

In recent years, there has been an increasing trend toward
developing speech processing methods that operate directly
on the speech signal in order to avoid the problematic fea-
ture extraction step. For example, Convolutional Neural Net-
works (CNNs) [4] and Deep Neural Networks (DNNs) [5],
have been successfully used for recognizing emotions directly
from raw temporal or spectral data.

The Liquid State Machine (LSM) is another recently pro-
posed method that operates directly on raw data. The LSM
relies on a network of spiking neurons that are much closer to
biological neurons than the rate-based model used in CNNs
and DNNs. Despite its theoretical appeal, the LSM is slow
in finding practical applications. The main problem when im-
plementing an LSM is to create a specific reservoir design
that is best adapted to the task at hand [6]. In this paper, this
problem is solved by introducing prior knowledge about the
human speech production system into the LSM. Without any
loss in terms of information, the speech signal is divided into
two components: the source and the vocal tract. Individually,
each component is easier to process by a reservoir of spiking
neurons. Furthermore, the inclusion of a production model
in the recognition system is justified by the motor theory of
speech perception, that states that people perceive speech by
identifying the vocal tract gestures that produced it [7].

The outline of the paper is as follows. The source-filter
model for human speech production and the principles under-
lying the liquid state machine are reviewed in section 2. The
proposed biologically inspired method is presented in section
3. Some experimental results are given and discussed in sec-
tion 4, and conclusions are drawn in section 5.

2. RELATION TO PRIOR WORK

2.1. The source-filter speech production model

According to the source-filter model of human speech pro-
duction, a speech signal is produced by passing a source of
air pressure through an acoustic filter [8]. The source is a
combination of a noise-like turbulent excitation produced
by constrictions along the vocal tract (for unvoiced speech)
and a quasi-periodic excitation produced by vibrating vocal
folds (for voiced speech). The filter represents the variable
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response of the vocal tract. In practice, the most commonly
used method to separate the contributions of the source and
the filter is the Linear Predictive (LP) analysis. The LP anal-
ysis is a frame-based process which results in: (1) a set of LP
coefficients which represent the filter for the frame; and (2) a
residual error signal which represents the source. Equation 1
shows the calculation of a predicted speech sample x̃(n) from
past speech samples x(n− i) and the calculation of a residual
sample e(n). The Levinson-Durbin algorithm is usually used
to find the ai coefficients that minimize the quadratic error E
as shown in equation 2.

x̃(n) =

M∑
i=1

aix(n− i), e(n) = x(n) − x̃(n) (1)

E =
∑
n

e(n)2 (2)

The LPC analysis has long proven to be a very efficient
tool in speech processing and is now used for example in ev-
ery speech coder.

2.2. The Liquid State Machine

A reservoir computing system consists of a Recurrent Neu-
ral Network (RNN) followed by an output layer of neurons
that performs the final recognition/classification task [6]. In
a reservoir computing system, the RNN is randomly created
and does not need to be trained using supervised methods
such as the gradient descent. The output layer, in contrast,
is trained using a supervised method. Reservoir computing is
successful for complex nonlinear classification tasks for two
reasons. First, because training an RNN using a gradient-
descent algorithm would be time consuming and prone to
convergence issues. Secondly, because reservoir computing
has been shown to outperform most other nonlinear identifi-
cation, prediction and classification methods on various prob-
lems.

The Liquid State Machine (LSM) is a special type of
reservoir computing method where the reservoir is a Spiking
Neural Network (SNN) [9]. SNNs use temporal coding and
therefore process information in very much the same way
as a biological neural structure does. Fig.1 shows a typical
LSM structure. First, the LSM uses a function LM to map
the input u(t) to the “liquid state” x(t), where x(t) is an
arbitrary nonlinear function of the input u(t) and of the past
input values. Secondly, a memoryless function fM maps x(t)
to the output y(t). This “readout function” is trained for the
task to accomplish. The SNN performs a nonlinear mapping
from the input space to the high dimensional “liquid state”
space. As a result of this projection, the separation of differ-
ent classes by the readout function is much easier. Several
methods including Support Vector Machine (SVM), Multi
Layer Perceptron (MLP) and ridge regression have been tried
as reservoir readouts [6].

Fig. 1. A typical LSM structure. Only the output layer is
trained using a supervised methods.

3. PROPOSED METHOD

Fig.2 shows the flowchart of the proposed speech emotion
recognition method. The recognition process is divided into
two steps: the preprocessing and the liquid state machine.

In the preprocessing step, the input speech signal is di-
vided into two orthogonal and complementary components
that are transformed and perceptually shaped according to the
properties of the human cochlea. Specifically, an LP analysis
is performed on a frame base. The prediction residual is cal-
culated according to equation 1 and decomposed using a 77-
channel gammatone filterbank with ERB scaling. This consti-
tutes the input of the first reservoir. In parallel, the frequency
response of each all-pole LP filter is computed to reveal the
formant structure of the speech signal. This frequency re-
sponse is also shaped using the exact same ERB scaling and
constitutes the input of the second reservoir.

As in the lower auditory nuclei, even auditory cortex has
the tonotopic structure [10]. Such structure suggests that
closer frequency channels are processed by closer groups
of neurons. In the design of the reservoirs, the neurons are
therefore arranged in 3D structures, each reservoir containing
77 layers of 3*3 neurons. Each layer of neurons is excited
by only one of the 77 input channels, in order of increasing
frequency. Connections between closer neurons are favored,
with a probability of connection between neuron n1 and n2
that depends on the distance D(n1, n2) according to equa-
tion 3. Parameters C and λ are responsible for controlling
the reach and density of the connections, and are set respec-
tively to 1 and 3.4. These values were determined after some
experiments and could probably be further optimized.

P (n1, n2) = Ce−
D2(n1,n2))

λ2 (3)

A standard implementation of the integrate-and-fire neu-
ron by Troyer is used [11]. The Asymmetric Spike Time-
Dependent Plasticity (STDP) is then used as the learning
rule to adapt the conductance of the synapses throughout the
speech sample. This learning rule is known to result in stable
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Fig. 2. Flowchart of proposed emotion recognition method.

networks that are very effective at extracting the correlations
present in the input [12]. The exact learning rule is given in
equation 4.

f (∆) =

{
A+e

∆
τ+ , ∆ < 0

−A−e
− ∆
τ−
,∆ > 0

(4)

More details about this learning rule can be found in
[12]. ∆ is the time difference between pre- and post-synaptic
spikes. A+ and A− are maximum amount of synaptic modi-
fications. Two key parameters to be set are the time constants
τ+ and τ− because they condition the memory of the reser-
voir. Following [12], τ+ was set to 20 ms and τ− was tuned
to maximize performance (see section 4). The simulation of
neural activity is done using the Brian2 simulator [13].

To reduce dimensionality, Principal Component Analysis
(PCA) is applied to the average activity of the neurons from
each reservoir. Compared to the widely used ridge regression,
PCA presents the advantage of being able to shrink the output
of the two reservoirs separately. The outputs of the two PCAs
are simply combined. For final recognition, Linear Discrimi-
nant Analysis (LDA) is used.

4. EXPERIMENTS

4.1. Berlin database of emotional speech

The proposed method was tested on the Berlin database of
emotional speech (Emo-DB, [14]). This is a well recorded
and now widely used emotional speech database. It is easily
accessible and well documented. It contains 535 utterances
produced by ten professional actors pronouncing ten different
texts and covers seven different emotions.
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Fig. 3. Preprocessing of speech signal. The scales of the
spectro-temporal representations are in dB.

4.2. preprocessing

The preprocessing step first consists in an LP analysis of the
input speech signal. The autocorrelation method is used to
estimate LP filters of order 16. A 30 ms Hamming window
is used so that the formant structure is adequately captured.
The LP coefficients are updated every 5 ms in order to closely
track the changes in the vocal tract. The source and vocal tract
components of the speech signal are then separated. First, the
LP residual is computed and fed to a 77-channel gammatone
filterbank. For each channel of the filterbank, the energy of
5 ms segments is computed and a logarithm is applied to re-
duce the dynamic range of this representation of the source
component. Secondly, the frequency response of each LP fil-
ters is computed and shaped using an ERB frequency scaling.
A logarithm is also applied to reduce the dynamic range of
this representation.

An example of emotional speech signal is represented in
Fig.3(a). The corresponding source and vocal tract represen-
tations are presented in Fig.3(b) and Fig.3(c), respectively.
These two spectro-temporal representations of the speech sig-
nal are used as inputs for two reservoirs of spiking neurons.

4.3. LSM tuning

Fig.4 shows the recognition rate of the proposed method for
different numbers of principal components for each of the two
reservoirs. The reservoir for the vocal tract component was
tuned for τ−τ+ = 5 and the reservoir for the source component
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Fig. 4. Performance (in percent) of the proposed method for
different numbers of principal components for each reservoir.

was tuned for τ−τ+ = 3. The results are obtained using 50-fold
cross validation where 90% of the database is used for train-
ing and 10% for testing. Results below 60% of recognition
rate are not shown. The vertical and horizontal axes are the
number of principal component selected from the vocal tract
and source reservoirs, respectively. The borders of the figure
shows the performance when only one reservoir is used (no
component from the other reservoir is selected). It is quite
clear that both reservoirs contribute highly to the final recog-
nition rate. The performance of the proposed method is not
very sensitive to the choice of numbers of principal compo-
nents, since the recognition rate stays above 80% for a wide
range of numbers of components.

The highest recognition rate of 82.35% is achieved for 29
and 44 principal components for the vocal tract and the source
reservoirs, respectively, and the 95% confidence interval is
±1.36%. Table 1 shows the corresponding confusion matrix.

Table 2 compares the recognition rate obtained with the
proposed method to those obtained with other methods that
have been tested on the same emotional speech database. Us-
ing feature selection and fusion, the method presented by Jin
in [15] achieved 83.10% of correct recognition. It should
be noted however that this method was tested on a subset
of only 494 speech samples out of 535, which artificially in-
creases the performance. Using an enhanced kernel isomap,
the method presented by Zhang in [16] achieved a recognition
rate of 80.85%. Finally, using rhyme and temporal features,
the one presented by Bhargava in [17] achieved 80.60%. With
a recognition rate of 82.35%, the method proposed in this pa-
per compares favorably to these state of the art methods.

In another experiment, we used an LSM with one single
reservoir to recognize emotion directly from the speech sig-
nal, without separating the source from the vocal tract. The
same preprocessing as for the source component was used.

Table 1. Confusion matrix.
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90 0 1 1 8 0 0

0 75 1 2 0 3 19

6 3 76 11 0 0 4

4 4 2 77 8 3 2

15 1 1 10 73 0 0

0 1 0 1 0 97 1

0 15 0 3 0 0 82

Table 2. Recognition rate compared with other methods.
Our method Jin Zhang Bhargava

82.35% *83.10% 80.85% 80.60%
* For a subset of Berlin Database

The design of the rest of the system was not changed. Af-
ter tuning the reservoir, a recognition rate of 75.73% was ob-
tained. The 6.62% difference in recognition rate clearly in-
dicates that including a source-filter model in the recognition
system significantly improves performance.

5. CONCLUSIONS

This paper proposed a new method for automatic recogni-
tion of speech emotions based on the Liquide State Machine
(LSM), an emerging and very promising tool. This method
operates directly on the speech signal and thus requires no
feature extraction. It is based on several biological elements.
First, the LSM includes a reservoir of spiking neurons which
are very close to biological cortical neurons. Then, its original
LSM design with two separate reservoirs (one for the source
signal and the other for the vocal tract) builds upon the motor
theory of human speech perception. This design is more flex-
ible and tunable, as for example the size and memory of the
two reservoirs can be tuned separately. One could imagine de-
composing the signal even further, using for example rapidly
evolving and slowly evolving waveform decomposition of the
source signal [18] Finally, the source and vocal tract compo-
nents of the speech signal are both analyzed on an Equivalent
Rectangular Bandwidth (ERB) scale which is a good model
for the human peripheral auditory system.

The experimental results showed that this method pro-
vides a very good classification performance for an emotion
recognition task. It is, however, a very general framework
that should also perform well for many other speech process-
ing tasks.
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