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ABSTRACT
We propose a real-time Convolutional Neural Network model
for speech emotion detection. Our model is trained from raw
audio on a small dataset of TED talks speech data, manually
annotated into three emotion classes: “Angry”, “Happy” and
“Sad”. It achieves an average accuracy of 66.1%, 5% higher
than a feature-based SVM baseline, with an evaluation time
of few hundred milliseconds. We also provide an in-depth
model visualization and analysis. We show how our neural
network effectively activates during the speech sections of the
waveform regardless of the emotion, ignoring the silence parts
which do not contain information. On the frequency domain
the CNN filters distribute throughout all the spectrum range,
with higher concentration around the average pitch range re-
lated to that emotion. Each filter also activates at multiple
frequency intervals, presumably due to the additional contri-
bution of amplitude-related feature learning. Our work will
allow faster and more accurate emotion detection modules for
human-machine empathetic dialog systems and other related
applications.

Index Terms— deep learning, emotion detection, convo-
lutional neural networks, neural network visualization

1. INTRODUCTION

Recognizing the emotions expressed in a speech signal, as well
as in other modes, is an hard task. It is characterized by a level
of subjectivity in defining and perceiving an emotion, as well
as by a lack of a univocal definition of standard descriptors
for each specific emotion [1, 2]. In recent years people have
delegated the role of learning emotional models to deep neural
networks, which have superseded the state-of-the-art methods.
Several neural network variants were developed that take as
input traditional prosodic features [3], spectrograms [4] or
directly raw audio samples [5]. The latter are the most promis-
ing, as they entirely eliminate all the overhead required for the
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feature extraction step, while yielding equally good or superior
performance. Deep learning from raw audio is now replacing
traditional feature-based learning in all speech-related tasks,
with Automatic Speech Recognition the most prominent field
[6, 7, 8].

While deep learning is being applied to many different
tasks, often superseding former state-of-the-art methods, re-
searchers are somehow ignoring the issue of what the model is
actually learning. Some timid attempts to visualize the neural
network activation have been proposed for very well-known
tasks in image recognition [9], Natural Language Processing
[10] and ASR [8]. For other less widespread problems, to our
knowledge, no studies of this kind exist. Emotion detection
is one of those tasks, where although people have replaced
shallow classifiers [11] with deep learning, there have not been
enough attempts to understand what happens inside the DNNs.
We believe it is not straightforward, as even for humans is
not easy to define and cluster emotions. Being able to give
proper interpretations is nevertheless an important challenge to
tackle, in order afterwards to develop better and faster learning
models.

In this paper we first propose a real-time, lightweight CNN
model, able to process speech segments in a few hundred
milliseconds on a low-end consumer notebook [12]. Fast
processing of speech signal is extremely important for the
development of machine dialog systems able to instantly react
to the user inputs, either acoustic, textual or visual [13]. We
then conduct an in-depth analysis of the model, showing where
our emotion model activates in time and in frequency. Such
analysis represents another important step towards our goal to
build a empathetic robot able to feel and react to emotions like
a human would do [13, 14, 15].

We concentrate on three basic emotions: anger, happiness
and sadness. There is generally no agreement on which emo-
tions constitute a fundamental set, or even if the concept of
“fundamental emotion” can be defined [16]. Our empirical
results on annotation and classification [17] suggested us that
these three descriptor are sufficiently easy to annotate for hu-
mans and to distinguish for machines without having a large
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Fig. 1. Convolutional Neural Network for emotion detection.

dataset. We plan in the future to extend our analysis to other
emotions and other data domains, after we collect and annotate
more speech data.

2. CONVOLUTIONAL NEURAL NETWORK FOR
EMOTION DETECTION

We train and analyze a Convolutional Neural Network (CNN)
to detect emotions from raw audio. The network is designed
with one convolutional layer to make it run very fast at evalua-
tion time, a few milliseconds compared to several seconds of a
two-layer structure in a standard desktop machine [12], thus
making it very suitable for real-time applications [13, 14].

Our network layout is shown in Figure 1. It takes as input
raw audio sampled at 8 kHz of arbitrary length. A convolution
layer is run directly on the audio sample x:

xC
i = f(WCx[i,i+v] + bC) (1)

where v is the convolution window size and f a non-linear
function. We use a window size of 200, which at 8 kHz sam-
pling rate corresponds to 25ms, and move the convolution
window with a step of 50, which corresponds to around 6ms.
The role of this layer is to extract the features for each frame,
and evaluate the differences among overlapping frames. On
top of the convolution outcome a max-pooling operation is
applied:

xMP
j = max

i
(xC

i,j) (2)

where i is the window index, and j the vector index within
each convolution window. The max-pooling allows to select
the contributions from the most significant frames, and to
combine them into a fixed size vector. It is then followed by a
fully connected layer (of size 200) and a final softmax layer to
perform the actual classification.

Emotion class SVM CNN
Angry 60.4 70.5
Happy 52.2 58.6
Sad 76.4 69.1
Average 63.0 66.1

Table 1. Average accuracy results over the three-folds ob-
tained from the SVM and CNN experiments.

3. EXPERIMENTS

3.1. Corpus

We built a small corpus of data collected through an ongoing
annotation project [17]. We split speeches obtained from the
TEDLIUM v2 corpus [18] into segments of 13-15 s each.
Among around 80K segments collected this way, we annotated
9879 segments. 8964 of them (around 90%) were annotated by
students from our research group, while the other 915 (10%)
through crowdsourcing from Amazon Mechanical Turk.

Each annotator was requested to select an emotion label for
each sample among the following: “Happy”, “Sad”, “Angry”,
“Neutral”, “Garbage”, the latter to be used when the segment
contained music or overlapped speech. For the data annotated
through crowdsourcing, multiple annotations were retrieved
for each sample, and we took the label chosen by the majority
of the annotators. In case of a draw between multiple emotions
we selected the neutral class for that sample.

We collected a total of 877 samples for the “Sad” class, 771
for the “Angry” class and 3498 for the “Happy” class1, with
the others classified into “Neutral” or “Garbage”. For each
emotion among “Happy”, “Sad” and “Angry” we prepared
a dataset for binary classification. We chose all the samples
of that emotion for the positive set, and an equal proportion
of samples for all the other classes except “Garbage” for the
negative set. More samples for the “Neutral” class were chosen
to balance the proportion when needed.

3.2. Experimental setup and classification results

We trained our network using standard backpropagation, with
momentum set to 0.9 and initial learning rate of 10−4. The
learning rate was halved every 15 epochs, and we stopped
the training when the error on the development set began to
increase. As non-linear function we used the rectified linear
function, since they gave better performance compared to
tanh. The CNN was implemented with THEANO toolkit.
Due to the limited size of the corpus we ran a 3-fold cross
validation, each time randomly taking 80% of the data as
training set, and 10% each for the development and test set.
As a baseline system we trained a linear-kernel SVM with the

1In a preliminary phase of our project we concentrated on the annotation
of happy samples obtained from an automatic API, thus the higher number of
samples for this class compared to angry and sad.
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Fig. 2. Audio sample (above) and spectrogram (below) of a 16 s male speech, with detail of the yellow highlighted region on the
right. White/black dots represent the max-pooling activation time instants. The top row of dots shows the activation of the “Sad”
network, the middle row the activation of the “Happy” network, and the bottom row the activation of the “Angry” network.

INTERSPEECH 2009 emotion challenge feature set [11, 12],
again applying three-fold cross-validation.

Overall average results for both methods are shown on
Table 1. Our CNN obtains an average accuracy of 66.1%, over
a SVM average result of 63.0%. The CNN yields higher results
on average and for the “Angry” and “Happy” classes, while for
“Sad” the SVM performs better. Results are generally lower
for the “Happy” class, in spite of the more data available. One
possible cause is that we noticed annotators from different
backgrounds selected this class with different proportions, and
it was generally harder to distinguish from “Neutral” [17].

4. NETWORK ANALYSIS

When using traditional feature-based classifiers, it is generally
straightforward to analyze the contribution of each individual
feature and identify the ones more representative for the task,
as well as how their variation influences the classification
outcome [19]. However deep learning based methods are
often treated as “magical boxes” that simply yield good results.
When deep learning is used to learn a feature representation
in addition to just perform the classification, it is even more
important to verify what happens under the hood.

4.1. Network activation

An important component of every CNN architecture is the
max-pooling layer. It allows to select features coming from
the dimensions where the convolution is applied, which is

time in our case. We expect the network to activate during the
speech intervals while ignoring the silences.

To show the role of the max-pooling layer in our applica-
tion, for each convolution window i of our input signal we
count the number of time it was selected by the max-pooling
layer. We then retrieve the time instants of each window and
highlight them on both a time-domain signal graph and the
spectrogram of the same signal. Figure 2 shows the analysis
of when the max-pooling was triggered on a long speech seg-
ment of around 16 s for all the three emotions considered. The
CNN effectively picks the time instants where the content in
frequency is higher, avoiding the silences. Although each emo-
tion is modeled by a different binary classifier, there seems not
to be much difference among them in the activation pattern.

4.2. Frequency analysis

Another important aspect to analyze is where the network
activates in the frequency domain, and whether there are any
differences among the three emotion models. The first layer of
our CNN is dedicated to features extraction and learning. Each
row of the parameter matrix Wc is a filtering function which
is applied to each convolution window [8]. The contributions
of all the filters (200 in our model) are then summed together.
Each filter element WC

i,j is a time factor, spaced of the interval
between one audio sample and the following of the discreet-
time input signal. Thus a filter can be easily converted to a
frequency spectrum, taking the absolute values of the FFT:

F (WC
i ) = |FFT(Wc

i )| (3)
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(a) Angry

(b) Happy

(c) Sad

Fig. 3. Frequency response of CNN filters. Activation is in
logarithmic scale, red color means high activation.

where i ∈ [0, 200] is the filter index.
Figure 3 shows the activation of each filter (rows in the

diagrams) throughout the range analyzed, limited to 4 kHz
due to the sampling rate. The activation values have been
converted to logarithmic scale with the following function:

a(i, f) = 20 log10(F (W c
i,f )) (4)

The filters are then sorted from bottom to top by ascending
central frequency, which is the frequency with the highest
activation value for each filter.

The first thing that can be noticed looking at Figure 2 is
the activation path behavior in the range between 0 and 1 kHz.
Human pitch lays typically in the range between 100Hz and
250Hz, and around this range several CNN filters activate.

The “Sad” emotion has the lowest activation point at around
125Hz, followed by “Angry” at 140Hz and then by “Happy”
at 360Hz. This is consistent with the prior literature [2, 1], as
“Sad” emotion is often characterized by a lower than average
pitch, and “Happy” by an higher than average pitch. The
“Angry” emotion is also sometimes characterized by a low
pitch, but often exhibits higher energy at higher frequencies,
and our neural network seems to reflect this, concentrating
more filters in the range between 500 and 1000Hz.

Another aspect evident from the figures is that the activa-
tion of each filter does not limit to only one frequency range,
but includes multiple frequencies, sparse throughout all the
spectrum. Multiple filters activates for each frequency value,
even those ignored in the central frequency path. It is a very
different behavior than what was shown for tasks like Auto-
matic Speech Recognition [8]. In that case each filter limits
to a very specific frequency range, and the filter distribution
follows a logarithmic curve. While in ASR the information
to retrieve is carried by the spectrogram, especially at low
frequency values, in the emotion detection case higher fre-
quencies seem to have an important role too and our network
shows a linear activation pattern beyond 1 kHz. Moreover
emotions are also described by features which do not depend
on frequency, such as differences in amplitude of the audio
sample. For example an angry speech has often great shifts in
amplitude, while a sad one is monotone. This further explains
the response of each filter to more than one frequency range.

5. CONCLUSION

We reported a real-time CNN model to detect emotion from
speech. Our CNN system is able to achieve an average accu-
racy of 66.1% on three main emotions: “Angry”, “Happy”,
“Sad”. The result was achieved with a very small corpus of
raw audio speech samples as training set. We also provided a
deeper analysis of the model activation in time and frequency.
We showed the max-pooling layer activates during the speech
sections of the input, ignoring the silences. Compared to ASR
tasks, the CNN filters concentrate around fundamental fre-
quency values associated to the emotion they are trained on,
and then distribute linearly for higher frequencies. Each filter
also activates at multiple frequencies in order to learn features
related to non-frequency related prosodic descriptors.

Our work included to our knowledge the first-ever analysis
of a simple and fast CNN model trained to recognize emotions.
It gives many insights on how the performance and the speed
of an emotion classifier can be improved in the future, for ex-
ample trying to separate the roles of amplitude and frequency.
An accurate real-time emotion detection framework will be an
important component of many speech-related application, in
particular related to human-machine dialog systems [15].
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