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ABSTRACT

We present a method that improves the objective quality estimation
of a speech utterance. We show that including raw features that
are presumably redundant reduces the effect of input noise and im-
proves the performance of linear regressors. To exploit this effect
we propose the novel idea to augment the feature set with redun-
dant features. The proposed augmented feature set and the neural
network that consists of an auto-encoder and a linear regressor leads
to improved prediction accuracy of the single-ended quality assess-
ment approach. Evaluating the system on the ITU-T Supplement
23 database illustrates that the proposed approach outperforms the
current state-of-the-art.

Index Terms— Feature augmentation, machine learning, non-
intrusive quality assessment.

1. INTRODUCTION

The success of any new speech transmission service in the telecom-
munication industry depends on the opinion of end-users about the
perceived speech quality. Thus, a reliable estimation of speech qual-
ity is necessary to enable the developers of a new service to evaluate
its quality or for the service providers to assess the quality of speech
on a regular basis. Subjective assessment [1], in which human sub-
jects score the quality of transmitted speech utterances, is the most
reliable method for assessing voice quality. Subjective tests in gen-
eral are expensive and time consuming. Therefore objective quality
assessment algorithms that provide accurate automatic assessment
of voice quality are desirable.

Objective algorithms are called intrusive [2, 3] if they require
both reference and degraded signals to estimate the distortion intro-
duced by the system under test. The algorithms are non-intrusive
[4, 5] if they do not depend on a reference signal. Non-intrusive
methods are important tools for monitoring speech quality of in-
service systems, where the clean reference signals are not available.
However, the design of a non-intrusive system is more complicated
than intrusive models and its performance is generally lower than
systems that use a reference signal.

In the conventional non-intrusive algorithms such as [4], the
knowledge of specialists is used to design complex algorithms that
model the interaction of the features and their contribution to the
overall quality of the audio. In contrast, machine learning methods
avoid designing an explicit model and apply the statistical learning
from training data. This generally results in a performance improve-
ment as the trained models are not based on poor assumptions or
inadequate knowledge. Such systems are also desirable as they are
flexible to be adapted to various applications and are not restricted
to any particular service. For example, a method implemented for
narrow-band data can be re-trained on wide-band database and used
for a wide-band service.

In machine learning terminology, non-intrusive quality estima-
tion can be described as a regressor or a multi-class classifier that
maps the signal features to the quality score. In the absolute cat-
egory rating (ACR) listening quality method [1], which is the most
commonly used subjective test procedure in telecommunications [6],
the subjects rate speech files using a five-level impairment scale. The
average over all rating scores of a speech file represents its subjective
listening quality mean opinion score (MOS). Our objective is to de-
velop a regressor that predicts MOS values that are highly correlated
with the MOS obtained from subjective tests.

Several non-intrusive methods that use machine learning algo-
rithms for estimating the score of audio signals have been proposed
[7, 8, 9, 10]. Our experimental results with state-of-the-art regressors
[11, 12, 13] and reviewing the scores reported in the literature indi-
cates the overall performance of speech quality assessment systems
is to be improved by either 1) having more training data, or 2) en-
hanced features. Collecting more training data is expensive and time
consuming. Hence the focus of this research is to form an enhanced
feature set that results in a performance improvement.

In this work we present the novel idea to augment the feature set
using raw features that are presumably redundant. This reduces the
effect of input noise and hence improves the performance. Section
2 explains this novel idea in more detail. Section 3 explains how
this novel idea is applied to quality assessment and discusses the im-
plementation aspects. Section 4 represents the experimental results
followed by the conclusion in section 5.

2. FEATURE SET AUGMENTATION

The objective we pursue in this work is to augment the feature set.
That is we enlarge the number of features. This section analyses
the scenario where the input features are noisy and shows including
redundant features reduces the effect of input noise and that results
in the better performance.

The term ”curse of dimensionality” was first introduced by Bell-
man [14]. It states that if the dimensionality of the input feature set
is very large in comparison to the number of observations, the con-
vergence of predictors to the true value of a smooth function is very
slow. The expression ”blessing of dimensionality” [15] suggests an
opposing viewpoint and declares although high-dimensional feature
increases the cost of learning algorithm to overcome the curse ef-
fect, it constructs more informative features that lead to high per-
formance. In particular [16] suggested that including presumably
redundant variables might result in a performance gain. This state-
ment became very well-known and a large number of papers (e.g.,
[17, 18] ) refer to this phrase. However, a detailed analysis for the
performance gain does not appear to exist. In this work we analyse
how redundant features can improve the performance of machine
learning models if they represent the same information, but contain
independent noise. We initially focus on the linear regression meth-
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ods. Our results suggest this performance gain can be generalised
into nonlinear learning problems too.

In the following we study the behaviour of enlarged feature sets
for two different models: 1) the ground truth model has low dimen-
sional features and we enlarge our feature set by observing redundant
features that decrease the effect of input noise, and 2) the ground
truth model has high dimensional features and we enlarge our feature
set by adding to it additional features that contain new information.
The different behaviours of two models above are studied in section
2.1 and 2.2.

2.1. Model behaviour for redundant features

In this section we assume the observed features are redundant and
contain the same information, but have independent noise. We first
write the ground truth model for the linear quality estimation. Then
we model the relation between the number of features and the perfor-
mance of the linear quality estimator. We will show that the variance
of error varies inversely as the number of redundant features in the
augmented feature set.

Let x be the realization of an underlying random feature vector
X . The MOS is computed as

MOS = aTx. (1)

We aim to develop an MOS estimator based on a set of observable
features y that are redundant:

ˆMOS = bTy. (2)

We assume X ∼ N (0, RX), and that the random observations
are of the form Y = C(X+U)+W , whereC is a matrix, andU and
W are random noise vectors called intrinsic noise and observation
noise respectively.

The random variable V is the measurement error and defined as

V = (aT − bTC)X − bTCU − bTW. (3)

Vector b must be estimated from the observations Y aiming to mini-
mize the measurement error on the training data.

σ2
V is scalar and X , U , and W are independent. Hence the opti-

mization criteria can be written as

σ2
V = tr[E[XT (aT − bTC)T (aT − bTC)X

+ UTCT bbTCU +WT bbTW ]]. (4)

Exchanging the linear operators, the expectation and the trace, and
using the cyclic property of the trace lead to

σ2
V = bT (CRXC

T + CRUC
T +RW )b− 2aTRXC

T b+ aTRXa.
(5)

The optimal vector b that minimizes the variance of V is.

b∗ = (CRXC
T + CRUC

T +RW )−1CRXa. (6)

Substituting (6) back into (5) gives

σ2
V = aTRXC

T (CRXC
T + CRUC

T +RW )−1

× (CRUC
T +RW )CT]a. (7)

Let us assume RX = Id×d (so X is normalized to have a unit
variance), RU = hId×d, and RW = gIt×t, where d and t are di-
mensionality of X and Y respectively, and g and h are small. Then

σ2
V = aT (CTC + hCTC + gI)−1(hCTC + gI)a. (8)

For simplicity we initially assume each feature is repeated n times.
Hence C is a tall matrix of n stacked identity matrices and CTC =
nI . We have

σ2
V = aT (nI + hnI + gI)−1(hnI + gI)a (9)

=
g + nh

g + n(h+ 1)
aT a. (10)

The behaviour of equation (10) is shown in fig. 1.a, which indicates
the variance of the error asymptotically goes down to h

h+1
aT a. This

behaviour is clearer if we do not have intrinsic noise (h = 0):

σ2
V =

g

g + n
aT a, (11)

in which σ2
V goes to zero for large n.
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Fig. 1. Different model behaviours for enlarging feature set.

Now let us consider the more general case, where C is a tall
n × d matrix, in which n and d are the dimensionality of the ob-
served and the underlying features respectively. Let us assume C ∼
NN (0,Σc), where Σc is a diagonal matrix with diagonal elements
equal to σc. We investigate the behaviour of σ2

V by estimating the
expectation value of equation (8). To make this analytically tractable
and show the principal model we assume h = 0. We analyse the
main aspect of the model behaviour with re-writing equation (8) as

σ2
V = gaT (CTC + gI)−1a, (12)

EC [σ2
V ] = gaTEC [(CTC + gI)−1]a. (13)

The elements of C are i.i.d and have normal distribution. Thus
CTC ∼ WN (Σc, n) has Wishart distribution [19], and its mean is

E[(CTC)ij ] =

{
nσc i = j

0 i 6= j
.

Since g is very small in compare with n, we estimate EC [(CTC +
gI)−1] with EC [(CTC)−1], which follows

EC [σ2
c ] ∼ gaTE[(CTC)−1]a. (14)

C is a tall matrix with normal distribution. Thus (CTC)−1 ∼
W−1(Σ−1

c , n) has an Inverse Wishart distribution. With the as-
sumption σc = 1 we have

E[(CTC)−1
ij ] =

{
1

n−d−1
i = j

0 i 6= j
.

Finally we estimate the mean of σ2
c as

Ec[σ
2
c ] ∼ g

n− d− 1
aT a, (15)

where n is the dimensionality of observed features. This suggests
the variance of the error varies inversely as the the number of fea-
tures , motivating the augmentation of the feature set with redundant
features for higher performance.
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2.2. Model behaviour for insufficient features

In this section we develop an MOS estimator based on the assump-
tion that the observed feature set y is a subset of underlying fea-
ture set x. We show that the relation between the performance of
the system and the number of the features is linear and compare its
behaviour with the model with redundant features explained in the
previous section.

Let us assume Y = SX +W , where W is random observation
noise. We define S = [In×n 0(N−n)×(N−n)], in which n and N
are the number of selected features and the number of full features
respectively. Accordingly, the measurement error is

V = (aT − bTS)X − bTW (16)

and the optimization criteria is defined

σ2
V = aTRXa+ bT (SRXS

T +RW )b− 2aTRXS
T b. (17)

The optimal vector b that minimizes σ2
V is

b∗ = (SRXS
T +RW )−1SRXa. (18)

Substituting (18) back into (17) provides

σ2
V = aTRX [I − ST (SRXS

T +RW )−1SRX ]a. (19)

Let us assume RX = I , so that X is normalized to have unit
variance, and RW = gIn×n. We obtain

σ2
V = aT [IN×N − ST (In×n + gIn×n)−1S]a (20)

=

N∑
i=1

λia
2
i , (21)

where λi = 1 if i > n and λi = g
g+1

if i ≤ n. With the assumption
ai ∼ N(E(ai), σ

2
i ) we have

E(σ2
V ) =

N − n
g+1

N

N∑
i=1

E(a2
i ). (22)

Equation (22) indicates the variance of error and the number of
selected features have a linear relationship, whereas their relation-
ship in the model with the redundant features is an inverse variation.
The various behaviours of two models are shown in fig. (1).

3. AUGMENTED FEATURE SET FOR QUALITY
ASSESSMENT

This section describes the proposed pre-processing approach to build
an augmented feature set for quality assessment. The non-intrusive
quality estimation P.563 and ANIQUE+ standards form a natural ref-
erence for our work and we use the features extracted from them to
build our input vector. The feature sets from the both standards are
expected to represent similar information about the quality of the
speech. Hence the proposed input vector is likely to hold redundant
features. It is expected that quality assessment system benefits from
this redundancy as it results in reducing the impact of input noise
based on discussion in section 2.

In ITU-T Recommendation P.563 [4], the incoming speech sig-
nal is analysed by several modules and a set of global parameters
are determined. A restricted set of the parameters are used to de-
termine the main distortion class of the speech signal: 1) Unnatural
voice (male, female, robotization), 2) High additional noises (low
static SNR, low segmental SNR), 3) Interruptions, mutes and time
clipping. Each class distortion uses a linear combination of a set of
parameters to generate the intermediate speech quality. P.563 pa-
rameters, Ξ = {ξi}43

i=1, naturally form an informative global feature
set for the quality assessment platforms.

In American national standard ANIQUE+ [5], the input signal
is decomposed into successive time frames that are classified into
active speech or audible background noise frames. The functional
blocks, motivated by human auditory systems at peripheral and cen-
tral levels, analyse the speech frames and obtains 69 features rele-
vant to human speech quality perception. These perceptual features
form a local feature vector Φ for frame quality degradation. We use
the method suggested in [20] and compute the first four moments of
the features to convert the per-frame features to per-utterance fea-
tures:

Ψ = {µΦi , σΦi , sΦi , kΦi}
69
i=1. (23)

µΦi , σΦi , sΦi , , and kΦi are mean, variance, skewness, and kurtosis
of the feature Φi that is computed over the speech active frames.

In ANIQUE+ we computed the per-utterance features from sta-
tistical attributes of the per-frame features. In contrast, the major-
ity of the per-utterance parameters in P.563 are calculated based
on the estimation of the distortion in the whole signal. The other
per-utterance features in P.563, which are also based on the calcu-
lation of speech statistics, are extracted from vocal tract module,
which unlike ANIQUE+ that focuses on the auditory system, models
the speech production system. Although the feature sets generated
from ANIQUE+ and P.563 have different natures, they both repre-
sent same information about the precieved quality of speech. Hence
we build an augmented feature set Σ = {Ξ,Ψ} with 319 features
that are expected to contain independant observation noise.

Having a large number of features in Σ, naturally leads to the
inclusion of the features that have poor behaviour. To facilitate the
training, we standardize each feature in Σ to obtain pre-distorted
feature xi with uniform probability distribution and build our final
augmented feature set X = {xi}319

i=1.

4. EXPERIMENTAL RESULTS

To evaluate the proposed system, we used seven data sets with ab-
solute category ratings from ITU-T coded-speech data set, Supple-
ment 23 [21]. The data sets contain 1328 speech files, where the
MOS for each utterance is the average rating over 24 subjects. In
the experiments with the features in section 4.1, we pooled all data
sets together and did cross-validation using six-seventh of the data
for the training and the remainder for the test. In the final experi-
ment to evaluate the proposed system in section 4.2 we used a cross-
validation procedure with leaving one data set out in each itera-
tion. In each round of the cross-validation we computed Root Mean
Squared Error (RMSE) and Pearson correlation-coefficient (PCC)
for both per-file and per-condition. The scores are reported after ap-
plying a third-order monotonic polynomial, as is standard practice
to reduce the effect of per-experiment variation [22].

Section 4.1 demonstrates how quality assessment system bene-
fits from redundant features. Section 4.2 presents the experimental
results from the proposed quality assessment system and compares
its performance with the existing methods.

0 100 200 300
0

0.2

0.4

0.6

0.8

Feature Number

M
ea

n 
Sq

ua
re

 E
rr

or

(a) Redundant feature model

Student Version of MATLAB

Fig. 2. Relation between the number of the features and the perfor-
mance of linear quality predictor.
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Fig. 3. The behaviour of non-linear model performance fits to mod-
els with redundant and subset of features.

4.1. Experiment with features
This section evaluates the relation between the number of the fea-
tures and the performance of the quality predictor and shows that our
experimental results fit the model with redundant features better. The
experimental results show the augmented feature set X proposed in
section 3, containing redundant features from P.563 and ANIQUE+,
improves the performance of speech quality assessment.

We initially use a simple linear regressor and analyse the relation
between its performance and the number of the features. We form
the input vector, Xn, by randomly selecting n = 10, 20, 30, ..., 310
features from X . We repeat the experiment with 20 random Xn and
compute the RMSE using cross-validation on SUPPL23. Fig. (2)
presents the results, which suggests the behaviour of our system is
strongly similar to the model for the redundant features from section
2.1. It is also observed that the variance of the performance of the
system is small for larger values of n. This is to be expected as in our
experiment the overall number of the features in X is fixed. Hence
the different random Xns are more likely to include same features
for larger n and that results in a smaller variance in the performance
of the quality predictor.

We then repeated our experiment with a non-linear regressor.
We used a neural network that has one hidden layer with five nodes
using sigmoid activation function, followed by a linear regressor.
The experimental results with the proposed neural network show
that the non-linear predictor has the same behaviour as linear one.
The blue points in figure 3 represents the experimental results. The
red points in figure 3.a and 3.b are the two candidate models from re-
dundant and insufficient features fit to data respectively. We used the
Akaike information criteria [23] to compare the fit of these two mod-
els to our experimental results. The model with redundant features
fits to our data better than the model with the insufficient features
and its evidence ratio is 2.5× 1031 . This confirms the performance
of the quality assessment is improved because the augmented feature
set X contains redundant features from P.563 and ANIQUE+.

4.2. Experimental result for quality of speech
This section evaluates the performance of our proposed non-
intrusive system with the augmented feature set. Experimental
results with SUPPL23 database indicates our proposed system per-
forms better than state-of-the-art in the field.

We configured our system to have one hidden layer that con-
tains five nodes with sigmoid activation function, followed by a lin-
ear regressor. To evaluate the effect of our proposed augmented fea-

Table 1. Model performance with different types of feature sets.
RMSE PCC

Input Feature set Per-File Per-Cond Per-File Per-Cond
P.563 0.40 0.29 0.75 0.87
ANIQUE+ 0.38 0.26 0.75 0.89
P.563 and ANIQUE+ 0.30 0.21 0.82 0.92

Table 2. Model performance with the augmented feature set.
RMSE PCC

Database Per-File Per-Cond Per-File Per-Cond
BNR-X1 0.18 0.08 0.86 0.95
BNR-X3 0.21 0. 11 0.84 0.95
CNET-X1 0.23 0.15 0.83 0.92
CNET-X3 0.47 0.38 0.79 0.89
CSELT-X3 0.60 0.51 0.80 0.88
NTT-X1 0.20 0.10 0.81 0.92
NTT-X3 0.27 0.18 0.84 0.92
Mean 0.31 0.21 0.82 0.92

ture set, we performed three experiments with different feature sets
shown in Table 1. The results suggest using redundant features from
ANIQUE+ and P.563 increases the performance. The detailed scores
from the augmented feature set is reported in Table 2.

Table 3 reviews the scores reported in the literature related to
machine learning methods for assessing the quality of speech. The
scores are based on seven-fold cross-validation on ITU-T SUPPL23.
ANIQUE+ has the high score 0.98 as ITU-T SUPPL23 was included
in the training data bases [24]. The next two high scores reported in
[20] and [8] are expected as they used additional databases to train
their system with. Although the score reported in [13] is 0.91, its
author acknowledged an implementation error and the true score is
0.88. We are unable to do the comparison with other methods such
as [25, 26, 9, 7] as the evaluations are performed with databases that
are not publicly available, or with databases for which the subjective
score is not available. From comparing our experimental results with
the scores reported in Table 3 we conclude that the proposed non-
intrusive quality assessment with the augmented feature set learns
efficiently from a small training database and that it provides a per-
formance that compares favorably to the state-of-the-art in the field.

Table 3. Review of the scores in the literature based on cross-
validation on ITU-T SUPPL23. The high scores with asterisk are
from systems that used additional databases for training.

Method PCC
ANIQUE+ [5] 0.98*
Low Complexity, Non-Intrusive Speech Quality ... [20] 0.94*
Non-intrusive speech Quality Assessment Using ... [8] 0.92*
A Hierarchical Bayesian Approach to Modeling ... [13] 0.91
Probabilistic Non-Intrusive Quality Assessment ... [10] 0.91
A Bayesian Estimator for Non-intrusive Speech ... [27] 0.90
A Bayesian Approach to Non-Intrusive Quality ... [28] 0.89
Nonintrusive Speech Quality Evaluation Using ... [29] 0.88
ITU-T P.563 [4] 0.88
A Bayesian Hierarchical Mixture of Experts [30] 0.88

5. CONCLUSION
Our hypothesis was that a non-intrusive speech quality assessment
performs better with an augmented feature set that contains features
representing the same information but including independent noise.
We studied the relation between the performance of the linear regres-
sors and the number of the redundant features and showed that the
variance of the error goes down by enlarging the feature set with re-
dundant features. We defined experiments with linear and non-linear
regressors to prove that. Based on our results, we can conclude that
machine learning based non-intrusive systems benefit from redun-
dant features by reducing the effect of input noise. Our experimen-
tal results with the ITU-T Supplement 23 database demonstrated the
performance gain associated with the augmentation of the feature set
and show that the proposed system outperforms the current state-of-
the-art.

5108



6. REFERENCES

[1] International Telecommunications Union (ITU-T), “Methods
for subjective determination of transmission quality, Rec-
ommendation P.800,” Online. http://www.itu.int/rec/T-REC-
P.800-199608-I/en.

[2] J. G. Beerends and J. A. Stemerdink, “A perceptual speech-
quality measure based on psychoacoustic sound representa-
tion,” J. Audio Eng. Soc., vol. 42, pp. 115–123, Mar. 1994.

[3] International Telecommunications Union (ITU-T), “P.862 :
Perceptual evaluation of speech quality (PESQ): An objective
method for end-to-end speech quality assessment of narrow-
band telephone networks and speech codecs,Recommendation
P.862,” Online. http://www.itu.int/rec/T-REC-P.862-200102-
I/en.

[4] International Telecommunications Union (ITU-T), “Single-
ended method for objective speech quality assessment in
narrow-band telephony applications,Recommendation P.563,”
Online. https://www.itu.int/rec/T-REC-P.Imp563/en.

[5] D. Kim and A. Tarraf, “ANIQUE+: A new American national
standard for non-intrusive estimation of narrowband speech
quality,” Bell Labs Technical Journal, vol. 12, pp. 221–236,
May 2007.

[6] V. Grancharov and W. B. Kleijn, “Speech quality assessment,”
in Springer Handbook of Speech Processing, pp. 83–102, Nov.
2007.

[7] Q. Li, Y. Fang, W. Lin, and D. Thalmann, “Non-intrusive
quality assessment for enhanced speech signals based on
spectro-temporal features,” in Multimedia and Expo Work-
shops (ICMEW), 2014 IEEE International Conference on,
pp. 1–6, July 2014.

[8] R. K. Dubey and A. Kumar, “Non-intrusive speech quality
assessment using several combinations of auditory features,”
International Journal of Speech Technology, vol. 16, no. 1,
pp. 89–101, 2013.

[9] M. Narwaria, W. Lin, I. V. McLoughlin, S. Emmanuel, and
C. L. Tien, “Non-intrusive speech quality assessment with sup-
port vector regression,” in Advances in Multimedia Modeling
(S. Boll, Q. Tian, L. Zhang, Z. Zhang, and Y.-P. P. Chen, eds.),
pp. 325–335, Berlin, Heidelberg: Springer Berlin Heidelberg,
2010.

[10] P. N. Petkov and W. B. Kleijn, “Probabilistic non-intrusive
quality assessment of speech for bounded-scale preference
scores,” in Quality of Multimedia Experience (QoMEX), 2010
Second International Workshop on, pp. 188–193, 2010.

[11] D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Poor, “Fast
adaptive variational sparse Bayesian learning with automatic
relevance determination,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Conference on,
pp. 2180–2183, May 2011.

[12] B. McWilliams, D. Balduzzi, and J. M. Buhmann, “Corre-
lated random features for fast semi-supervised learning,” in Ad-
vances in Neural Information Processing Systems 26 (C. J. C.
Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger,
eds.), pp. 440–448, 2013.

[13] I. Mossavat, P. N. Petkov, W. B. Kleijn, and O. Amft, “A hierar-
chical Bayesian approach to modeling heterogeneity in speech
quality assessment,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 1, pp. 136–146, 2012.

[14] R. Bellman, Dynamic Programming. Princeton, NJ, USA:
Princeton University Press, 1 ed., 1957.

[15] D. L. Donoho, “High-dimensional data analysis: The curses
and blessings of dimensionality,” in AMS Conference on Math
Challenges of the 21st Century, 2000.

[16] I. Guyon and A. Elisseeff, “An introduction to variable and fea-
ture selection,” Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, 2003.

[17] R. Ruiz, J. C. R. A, and J. S. A. ruiz B, “Incremental wrapper-
based gene selection from microarray data for cancer classifi-
cation,” Pattern Recognition, pp. 2383–2392, 2006.

[18] V. Balasubramanian, S. S. Ho, and V. Vovk, Conformal Predic-
tion for Reliable Machine Learning: Theory, Adaptations and
Applications. Elsevier Science, 2014.

[19] J. Wishart, “The generalised product moment distribution in
samples from a normal multivariate population,” Biometrika,
vol. 20A, no. 1/2, pp. 32–52, 1928.

[20] V. Grancharov, D. Zhao, J. Lindblom, and W. B. Kleijn, “Low-
complexity, nonintrusive speech quality assessment,” Audio,
Speech, and Language Processing, IEEE Transactions on,
vol. 14, pp. 1948–1956, nov. 2006.

[21] International Telecommunications Union (ITU-T), “ITU-T
coded-speech database.” ITU-T Rec. P.Suppl. 23.

[22] A. W. Rix, “Comparison between subjective listening qual-
ity and P.862 PESQ score,” Proc. Meas. Speech Qual. Net.
(MESAQIN), pp. 17–25, 2003.

[23] H. Akaike, “Information theory and an extension of the maxi-
mum likelihood principle,” in Second International Symposium
on Information Theory (B. N. Petrov and F. Csaki, eds.), (Bu-
dapest), pp. 267–281, Akadémiai Kiado, 1973.

[24] D. Kim, Personal Communication.

[25] T. Falk and W. Chan, “Single-ended speech quality measure-
ment using machine learning methods,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 14, pp. 1935–1947, Nov. 2006.

[26] L. Ding, Z. Lin, A. Radwan, M. S. El-Hennawey, and R. A.
Goubran, “Non-intrusive single-ended speech quality assess-
ment in VoIP,” Speech Communication, vol. 49, no. 6, pp. 477–
489, 2007.

[27] G. Chen and V. Parsa, “A Bayesian estimator for non-intrusive
speech quality evaluation in psychoacoustic domain,” in 2006
IEEE International Symposium on Signal Processing and In-
formation Technology, pp. 438–441, Aug 2006.

[28] P. N. Petkov, I. S. Mossavat, and W. B. Kleijn, “A Bayesian
approach to non-intrusive quality assessment of speech.,” in
INTERSPEECH, pp. 2875–2878, ISCA, 2009.

[29] G. Chen and V. Parsa, “Nonintrusive speech quality evaluation
using an adaptive neurofuzzy inference system,” IEEE Signal
Processing Letters, vol. 12, pp. 403–406, May 2005.

[30] S. I. Mossavat, O. Amft, B. de Vries, P. Petkov, and W. B.
Kleijn, “A Bayesian hierarchical mixture of experts approach
to estimate speech quality,” in QoMEX 2010: Second In-
ternational Workshop on Quality of Multimedia Experience,
pp. 200–205, IEEE Signal Processing Society, IEEE Signal
Processing Society, 2010.

5109


