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ABSTRACT

Speechreading is a notoriously difficult task for humans to
perform. In this paper we present an end-to-end model based
on a convolutional neural network (CNN) for generating an
intelligible acoustic speech signal from silent video frames
of a speaking person. The proposed CNN generates sound
features for each frame based on its neighboring frames.
Waveforms are then synthesized from the learned speech
features to produce intelligible speech. We show that by
leveraging the automatic feature learning capabilities of a
CNN, we can obtain state-of-the-art word intelligibility on
the GRID dataset, and show promising results for learning
out-of-vocabulary (OOV) words.

Index Terms— Speechreading, visual speech processing,
articulatory-to-acoustic mapping, speech intelligibility, neu-
ral networks

1. INTRODUCTION

Speechreading is the task of obtaining reliable phonetic in-
formation from a speaker’s face during speech perception. It
has been described as “trying to grasp with one sense infor-
mation meant for another”. Given the fact that often several
phonemes (phonetic units of speech) correspond to a single
viseme (visual unit of speech), it is a notoriously difficult task
for humans to perform.

Several applications come to mind for automatic video-
to-speech systems: Enabling videoconferencing from within
a noisy environment; facilitating conversation at a party with
loud music between people having wearable cameras and ear-
pieces; maybe even using surveillance video as a long-range
listening device.

Much work has been done in the area of automating
speechreading by computers [1, 2, 3]. There are two main
approaches to this task. The first, and the one most widely
attempted in the past, consists of modeling speechreading as
a classification problem. In this approach, the input video
is manually segmented into short clips which contain either
whole words from a predefined dictionary, or parts of words
comprising phonemes or visemes [4]. Then, visual features
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Fig. 1. Our CNN-based model takes the frames of silent video
as input, and predicts sound features which are converted into
intelligible speech. Sound features are calculated by perform-
ing 8th-order LPC analysis and LSP decomposition on half-
overlapping audio frames of 40ms each. Concatenating ev-

ery two successive LSP vectors results in a feature vector
S; € R!8,

are extracted from the frames and fed to a classifier. Wand et
al. [5], Assael et al. [6] and Chung et al. [7] have all recently
showed state-of-the-art word and sentence-level classification
results using neural network-based models.

The second approach, and the one used in this work, is to
model speechreading as an articulatory-to-acoustic mapping
problem in which the “label” of each short video segment is
a corresponding feature vector representing the audio signal.
Kello and Plaut [8] and Hueber and Bailly [9] attempted this
approach using various sensors to record mouth movements.
Le Cornu and Milner [10] took this direction in a recent work
where they used hand-crafted visual features to produce intel-
ligible audio.

A major advantage of this model of learning is its non-
dependency on a particular segmentation of the input data into
words or sub-words. It does not either need to have explicit
manually-annotated labels, but rather uses “natural supervi-
sion” [11], in which the prediction target is derived from a
natural signal in the world. A regression-based model is also
vocabulary-agnostic. Given a training set with a large enough
representation of the phonemes/visemes of a particular lan-
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Fig. 2. This figure illustrates (1) the importance of allowing
the network to learn visual features from the speaker’s en-
tire face, as opposed to the mouth region only; (2) the disam-
biguation effect of using temporal context. Green line (top) is
test error as a function of input clip length K when using only
mouth region, and blue line (bottom) is test error when using
full face region. Face region error is 40% lower than mouth
region in the best configuration.

guage, it can reconstruct words that are not present in the
training set. Classification at the sub-word level can also have
the same effect. Another advantage to this model is its abil-
ity to reconstruct the non-textual parts of human speech, e.g.
emotion, prosody, etc.

Researchers have spent much time and effort finding vi-
sual features which accurately map facial movements to audi-
tory signal. We bypass the need for feature crafting by utiliz-
ing CNNs, which have brought significant advances to com-
puter vision in recent years. Given raw visual data as input,
our network automatically learns optimal visual features for
reconstructing an acoustic signal closest to the original.

In this paper, we: (1) Present an end-to-end CNN-based
model that predicts the speech audio signal of a silent video of
a person speaking, significantly improving state-of-the-art re-
constructed speech intelligibility; (2) demonstrate that allow-
ing the model to learn from the speaker’s entire face instead
of only the mouth region greatly improves performance; (3)
show that modeling speechreading as a regression problem
allows us to reconstruct out-of-vocabulary words.

2. SPEECH REPRESENTATION

The challenge of finding a suitable representation for an
acoustic speech signal which can be estimated by a neural
network on one hand, and synthesized back into intelligible
audio on the other, is not trivial. Spectrogram magnitude, for
example, can be used as network output, however the quality
of its resynthesis into speech is usually poor, as it does not
contain phase information. Use of raw waveform as network
output was ruled out for lack of a suitable loss function with
which to train the network.

Linear Predictive Coding (LPC) is a powerful and widely
used technique for representing the spectral envelope of a dig-
ital speech signal, which assumes a source-filter model of

speech production [12]. LPC analysis is applied to overlap-
ping audio frames of the original speech signal, resulting in
an LPC coefficient vector whose order P can be tuned. Line
Spectrum Pairs (LSP) [13] are a representation of LPC coeffi-
cients which are more stable and robust to quantization and
small coefficient deviations. LSPs are therefore useful for
speech coding and transmission over a channel, and indeed
proved to be well suited to the task at hand.

We apply the following procedure to calculate audio fea-
tures suitable for use as neural network output: First, the au-
dio from each video sequence is downsampled to 8kHz and
split into audio frames of 40ms (320 samples) each, with an
overlap of 20ms. 8th-order LPC analysis is applied to each
audio frame, as done by [10], followed by LSP decomposi-
tion, resulting in a feature vector of length 9 per frame. While
8th-order LPC is relatively low for high-fidelity modeling of
the speech spectrum, we did so in order to isolate the effect
of using CNN-learned visual features versus the hand-crafted
ones of [10]. Each video frame has two successive corre-
sponding feature vectors, which are concatenated to form a
sound vector, S; € R'®, See Figure 1 for an illustration of
this procedure. Finally, the vectors are standardized element-
wise by subtracting the mean and dividing by the standard
deviation of each element.

3. PREDICTING SPEECH

3.1. Regressing sound features

Given a sequence of input frames Iy, Io, ..., Iy we would
like to estimate a corresponding sequence of sound features
51,859, ..., Sy where S; € R18.

Input representation Our goal is to reconstruct a single
audio representation vector .S; which corresponds to the du-
ration of a single video frame I;. However, instantaneous
lip movements such as those in isolated video frames can
be significantly disambiguated by using a temporal neighbor-
hood as context. Therefore, the input to our network is a clip
of K consecutive grayscale video frames, out of which the
speaker’s face is cropped and scaled to 128 x 128 pixels. This
results in an input volume of size 128 x 128 x K scalars,
which is then normalized by dividing by maximum pixel in-
tensity and subtracting the mean.

Figure 2 illustrates the importance of allowing the net-
work to learn visual features from the entire face, as opposed
to the mouth region only, as widely done in the past. The two
lines in the graph represent final network test error as a func-
tion of the length K of the clip used as input to the CNN. We
tested the values of K € {1,3,5,7,9}, while the output .S;
always remained the sound features of the center frame. Not
surprisingly, the largest gain in performance for both face and
mouth regions is when clip length is increased from K = 1
frame to K = 3 frames, highlighting the importance of con-
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Fig. 3. Examples of original (top) and reconstructed (bottom): (a) LSP coefficients, (b) waveform and (c) spectrogram. The
vertical columns of (a) are the actual output of the CNN. Spectral envelope of reconstructed audio (c) is relatively accurate,
however unvoiced excitation results in the lack of formants (horizontal lines inside spectral envelope, representing frequency of

voiced speech).

text. The advantage of learning features from the full facial
information is also evident, with the best face region error
40% lower than the best mouth region error (both at K = 9).
We hypothesize that this is as result of our CNN using the in-
creased amount of visual information to disambiguate similar
mouth movements.

Sound prediction model We use a convolutional neu-
ral network (CNN) that takes the aforementioned video
clip of size 128 x 128 x K as input. Our network uses
VGG-like [14] stacks of small 3 x 3 receptive fields in its
convolutional layers. The architecture comprises five con-
secutive convd — conv3 — maxpool blocks consisting of
32 —32—64 — 128 — 128 kernels, respectively. These are fol-
lowed by two fully connected layers with 512 neurons each.
The last layer of our CNN is of size 18 which corresponds
to the size of the sound representation vectors we wish to
predict. The network is trained with backpropagation using
mean squared error (MSE) loss.

3.2. Generating a waveform

Source-filter speech synthesizers such as [15] use both fil-
ter parameters as well as an excitation signal to construct an
acoustic signal from LPC features. Predicting excitation pa-
rameters is out of the scope of this work, and we therefore use
Gaussian white noise as the excitation signal. This produces
an unvoiced speech signal and results in unnatural sounding
speech. Although this method of generating a waveform is
relatively simplistic, we found that it worked quite well for
speech intelligibility purposes, which is the focus of our work.

4. EXPERIMENTS

We applied our speech-reconstruction model to several tasks,
and evaluated it with a human listening study.’

IExamples of reconstructed speech can be found at
http://www.vision.huji.ac.il/vid2speech

Command Color Preposition Letter Digit Adverb

bin blue at A-Z 0-9 again

lay green by minus W now
place red in please

set white with soon

Table 1. GRID sentence grammar.

Implementation details Our network implementation is
based on the Keras library [16] built on top of TensorFlow
[17]. Network weights are initialized using the initialization
procedure suggested by He ef al. [18]. We use Leaky ReLLU
[19] as the non-linear activation function in all layers but
the last two, in which we use the hyperbolic tangent (tanh)
function. Adam optimizer [20] is used with a learning rate
of 0.003. Dropout [21] is used to prevent overfitting, with
a rate of 0.25 after convolutional layers and 0.5 after fully
connected ones. We use mini-batches of 32 training samples
each and stop training when the validation loss stops de-
creasing (around 80 epochs). Training is done using a single
Nvidia Titan Black GPU. We use a cascade-based face de-
tector from OpenCV [22], and crop out the mouth region for
the comparison in Figure 2 by using a hard-coded mask. For
LPC analysis/resynthesis, as well as excitation generation, we
used pysptk, a Python wrapper for Speech Signal Processing
Toolkit (SPTK) [23].

4.1. GRID corpus

We performed our experiments on the GRID audiovisual sen-
tence corpus [24], a large dataset of audio and video (facial)
recordings of 1000 sentences spoken by 34 talkers (18 male,
16 female). Each sentence consists of a six word sequence of
the form shown in Table 1, e.g. “Place green at H 7 now”.

A total of 51 different words are contained in the GRID
corpus. Videos have a fixed duration of 3 seconds at a frame
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rate of 25 FPS with 720x576 resolution, resulting in se-
quences comprising 75 frames. These videos are prepro-
cessed as described in Section 3.1 before feeding them into
the network. The acoustic part of the GRID corpus is used as
described in Section 2.

In order to accurately compare our results with [10], we
performed our experiments on the 1000 videos of speaker four
(54, female) as done there. The training/testing split for each
experiment will be described in the following sections.

4.2. Sound prediction tasks

Reconstruction from full dataset The first task, proposed
by [10], is designed to examine whether reconstructing audio
from visual features can produce intelligible speech. For this
task we trained our model on a random 80/20 train/test split
of the 1000 videos of S4 and made sure that all 51 GRID
words were represented in each set. The resulting represen-
tation vectors were converted back into waveform using un-
voiced excitation, and two different multimedia configura-
tions were constructed: the predicted audio-only and the com-
bination of the original video with reconstructed audio.

Reconstructing out-of-vocabulary words As cited earlier,
regression-based models can be used to reconstruct out-of-
vocabulary (OOV) words. To test this, we performed the fol-
lowing experiment: The videos in our dataset were sorted ac-
cording to the digit uttered in each sentence, and our network
was trained and tested on five different train/test splits - each
with two distinct digits left out of the training set. For exam-
ple, the network was trained on all sequences with the num-
bers 1 — 8 uttered, and tested only on sequences containing
the numbers 9 and 0.

4.3. Evaluating the speech predictions

We assessed the intelligibility of the reconstructed speech us-
ing a human listening study done using Amazon Mechani-
cal Turk (MTurk). Each job consisted of transcribing one of
three types of 3-second clips: audio-only, audio-visual and
OOV audio-visual. The listeners were unaware of the dif-
ferences between the clips. For each clip, they were given
the GRID vocabulary and tasked with classifying each recon-
structed word into one of its possible options. All together,
over 400 videos containing 38 distinct sequences were tran-
scribed by 23 different MTurk workers, which is comparable
to the 20-listener study done by [10].

4.4. Results

Table 2 shows the results of our first task, reconstruction from
the full dataset, along with a comparison to [10]. Our recon-
structed audio is significantly more intelligible than the best
results of [10], as shown by both audio-only and audio-visual
tests. The final column shows the result of retraining and

Ours
[10] S4 S2
Audio-only  40.0% 82.6% -
Audio-visual 51.9% 79.9% 79%

Table 2. Our reconstructed speech is significantly more in-
telligible than the results of [10]. We tested our model on
videos from two different speakers in the GRID corpus, 52
(male) and S4 (female). Randomly guessing a word from
each GRID category would result in 19% “intelligibility”.

OOV None out
51.6% 93.4%

Chance

10.0%

Audio-visual

Table 3. Out-of-vocabulary (OOV) intelligibility results. We
tested this by reconstructing spoken digits which were left
out of the training set. Listeners were five times more likely
to choose the correct digit than randomly guessing, however
only slightly more than half as likely compared to having all
digits represented in the training set.

testing our model on another speaker from the GRID corpus,
speaker two (S2, male), whose speech clarity is comparable
to S4, as reported by [24]. We used the same listening test
methodology described above, however this time only using
combined audio and video. Examples of original vs. recon-
structed LSP coefficients, waveform and spectrogram for this
task can be seen in Figure 3.

Results for the OOV task which appear in Table 3 were
obtained by averaging digit annotation accuracies of the five
train/test splits. The fact that human subjects were over five
times more likely than chance to choose the correct digit ut-
tered after listening to the reconstructed audio shows that us-
ing regression to solve the OOV problem is a promising direc-
tion. Moreover, using a larger and more diversified training
set vocabulary is likely to significantly increase OOV recon-
struction intelligibility.

5. CONCLUDING REMARKS

This work has proven the feasibility of reconstructing an in-
telligible audio speech signal from silent videos frames. OOV
word reconstruction was also shown to hold promise by mod-
eling automatic speechreading as a regression problem, and
using a CNN to automatically learn relevant visual features.

The work described in this paper can serve as a basis for
several directions of further research. These include using a
less constrained video dataset to show real-world reconstruc-
tion viability and generalizing to speaker-independent and
multiple speaker reconstruction.
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