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ABSTRACT
We propose a non-intrusive intelligibility measure for noisy and non-
linearly processed speech, i.e. a measure which can predict intelligibility
from a degraded speech signal without requiring a clean reference signal.
The proposed measure is based on the Short-Time Objective Intelligi-
bility (STOI) measure. In particular, the non-intrusive STOI measure
estimates clean signal amplitude envelopes from the degraded signal.
Subsequently, the STOI measure is evaluated by use of the envelopes of
the degraded signal and the estimated clean envelopes. The performance
of the proposed measure is evaluated on a dataset including speech in
different noise types, processed with binary masks. The measure is shown
to predict intelligibility well in all tested conditions, with the exception
of those including a single competing speaker. While the measure does
not perform as well as the original (intrusive) STOI measure, it is shown
to outperform existing non-intrusive measures.

Index Terms— non-intrusive speech intelligibility prediction, en-
hanced speech, speech in noise

1. INTRODUCTION

In recent years, Speech Intelligibility Prediction (SIP) has been inves-
tigated with great interest due to its potential as a tool in optimizing
speech intelligibility across a wide range of applications, including e.g.
architectural acoustics [1], telecommunications [2], and hearing aid signal
processing [3, 4, 5]. Much of the recent work in the field is based on the
classical methods: the Speech Intelligibility Index (SII) [6, 7] and the
Speech Transmission Index (STI) [8, 9]. This has led to methods such as
the Extended SII (ESII) [10, 11], the Coherence SII (CSII) [12] and the
Binaural Speech Intelligibility Measure (BSIM) [13, 14]. Recently, the
physiologically founded multi-resolution speech-based Envelope Power
Spectrum Model (mr-sEPSM) [15] has received attention for its ability to
predict intelligibility of speech in reverberation and modulated noise. An-
other recent method, the Short-Time Objective Intelligibility (STOI) mea-
sure [16], has become popular within the signal processing community
because of its simplicity and proven ability to predict the impact of various
speech processing algorithms [17, 2, 5]. Several variations of the STOI
measure with specialized properties have been proposed [18, 3, 19].

The mentioned methods require access to a clean reference signal in
addition to either the masker signal or the degraded speech signal. These
are referred to as intrusive methods, because of their dependence on a
clean reference signal. In some situations, intrusive methods cannot be
applied because the clean reference signal is unknown or poorly defined,
e.g. when attempting to predict the intelligibility of an unknown speech
signal on a signal processing device in realtime.

The above concern has led to research into non-intrusive SIP. One
such method is the Speech to Reverberation Modulation energy Ra-
tio (SRMR) [20] which aims to predict the intelligibility of reverberated
speech from the ratio between low and high modulation frequency

energy. The SRMR has been shown to outperform a number of existing
measures [20]. While originally formulated to predict the intelligibility of
reverberant signals, the authors have later used the measure successfully
to predict the intelligibility of noisy and processed signals [5]. A similar
measure, the average modulation-spectrum area (ModA) [21], aims
to predict the intelligibility of reverberated speech from the area of
the modulation spectrum. This measure has been shown to compare
favorably to other non-intrusive methods across a range of conditions
spanning reverberation, additive noise, and distortion [5].

Another means to obtain non-intrusive SIP methods, is to estimate
the output of existing intrusive methods, without using a clean reference
signal. This can be done using machine learning, or by using noise reduc-
tion to estimate the clean signal from the degraded one. For instance, [22]
uses a twin Hidden Markov Model (HMM) to estimate the STOI mea-
sure, while [23] uses tree based regression to predict both the STOI
and PESQ [24] measures. A semi-non-intrusive method for hearing aids,
using beamforming to estimate the clean signal, is proposed in [4] .

In the present paper we propose a fully non-intrusive version of
the STOI measure. The proposed measure estimates envelopes of the
clean reference signal from the degraded signal by use of a statistical
clean speech model. The measure requires training with clean speech, but
does not require training with particular interferer- or processing types.
The remainder of the paper progresses as follows: Sec. 2 describes the
proposed measure, Sec. 3 evaluates the measure and compares it to a
number of existing intelligibility measures, and Sec. 4 concludes upon
the presented findings.

2. THE NI-STOI MEASURE

We describe the proposed Non-Intrusive STOI (NI-STOI) measure,
which is similar to the original (intrusive) STOI measure [16]. The STOI
measure assumes intelligibility to be related to the correlation between
clean and degraded 1/3-octave band amplitude envelopes. However, as
we do not assume a clean reference signal to be available, we estimate
the clean speech envelopes from the degraded speech envelopes. This
is done by use of a statistical model of clean speech. An overview of
the NI-STOI measure is given in Fig. 1.

2.1. Generating a Clean Speech Model

To distinguish between speech and noise/distortion, we generate a
modulation domain model of clean speech. This model is generated
on the basis of a long clean speech signal, xc(t), i.e. long enough to be
considered representative of speech in general. Silent parts of the signal
are removed with a Voice Activity Detector (VAD), and the signal is re-
sampled to 10 kHz, as for the original STOI measure [16]. The resulting
signal is Time Frequency (TF) decomposed with a short time Discrete
Fourier Transformation (DFT) as specified in [16]. Let x̂c(k,m) ∈C
denote the kth DFT-coefficient of themth window.
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Fig. 1. A block diagram of the proposed non-intrusive intelligibility measure. The top illustrates how a clean speech model is generated from a
sequence of clean speech, xc(t). The bottom illustrates how the intelligibility measure is evaluated for a degraded signal, y(t).

We then extract J = 15 1/3-octave band envelopes from the TF-
decomposed signal as follows [16]:

Xc
j(m)=

√√√√√k2(j)∑
k1(j)

|x̂c(k,m)|2, (1)

where k1(j) and k2(j) are the lower and upper bounds of the jth
1/3-octave band. The resulting envelope samples are arranged in vectors
ofN=30 samples:

xc
j,m=

[
Xc

j(m−N+1),...,Xc
j(m)

]T
, (2)

which are normalized to have zero mean and unit norm:

x̃c
j,m=

xc
j,m−1µxc

j,m

||xc
j,m||

, (3)

where µ(·) denotes the mean of entries in a vector and 1 is a vector
of ones. Let x̂c

j,m denote the DFT of x̃c
j,m, i.e. the modulation do-

main representation of the signal. We then stack modulation domain
representations for all frequency bands into one vector:

X̂c
m=

[
x̂cT
1,m,...,x̂

cT
J,m

]T
∈RJN×1. (4)

The transition from (2) to (4) is illustrated on Fig. 1 by the blocks ”fft(·)”
and ”Stack bands”. We use the resulting vectors to estimate an amplitude
covariance matrix for all modulation frequencies across all frequency
bands:

C=
1

M

M+N−1∑
m=N

|X̂c
m||X̂c

m|T , (5)

where M is the number of frames, and | · | denotes the absolute value
which is evaluated on an entry-wise basis for vectors. As we show in
Sec 3, matrix C can be approximated well by a low rank matrix. This
property can be used to distinguish between speech and non-speech
components of degraded speech envelopes. We compute the eigenvalue
decomposition of C, resulting in a descending sequence of eigenval-
ues, λ1,λ2, ... , λJN , and corresponding eigenvectors, v1, v2, ... , vJN .
In the following section we use the principal components, v1, ... , vK ,
with 1 ≤ K ≤ JN , to estimate the envelopes of the unknown clean
reference signal.

2.2. Computing the NI-STOI Measure

We now describe the computation of the proposed NI-STOI measure.
This is done as for the original STOI measure [16], except that the clean
envelope samples are estimated from the degraded ones, because only the
degraded signal, y(t), is assumed known. Silent regions of the signals
are removed, by use of the same VAD as for the original STOI measure.
While this does make use of the clean reference signal, x(t) it ensures
comparability with the original STOI measure. Then, the degraded signal
is resampled to 10 kHz. At this stage we add a faint noise signal, shaped
such that the energy in each 1/3-octave band corresponds to the average
hearing threshold in quiet [25] (similar to what is done in e.g. [13]). This
has shown necessary in conditions where aggressive speech processing
renders the presented signal almost inaudible. The noise has little impact
on predictions at normal speech levels. A TF decomposition, carried out
as described in Sec. 2.1, results in DFT coefficients of the degraded signal,
ŷ(k,m). Using these, we define envelope samples, Yj(m), similar to (1),
normalized envelope vectors, ỹj,m, similar to (3), and modulation domain
vectors, Ŷm, similar to (4). We then construct an estimate of the corre-
sponding clean signal modulation vector, X̂m, by assuming: 1) the phase
of X̂m is the same as the phase of Ŷm, and 2) the magnitude of X̂m

can be approximated by projecting the magnitude of Ŷm into the space
spanned by theK clean signal principal components, v1,...,vK , found
in Sec. 2.1. These assumptions lead to the following estimate of X̂m:

¯̂Xm=ej]Ŷm�
K∑

k=1

vkv
T
k |Ŷm|, (6)

where ej]Ŷm is a vector in which all entries have the same phase
as Ŷm, but unit magnitude, while� denotes entry-wise multiplication
(Hadamard product). The resulting estimate is split into J vectors,
¯̂x1,m,...,¯̂xJ,m, of lengthN , corresponding to the inverse of the operation
described in (4). By computing the DFT of these vectors, we obtain
estimates, x̄1,m,...,x̄J,m, of the clean signal envelopes. From this point,
we can compute the (intrusive) STOI measure, using the estimated clean
speech envelopes in place of the true ones. To do this, we compute the
correlation between the (estimated) clean and degraded envelopes [16]1:

dj,m=

(
x̄j,m−1µx̄j,m

)T(
yj,m−1µyj,m

)
||x̄j,m−1µx̄j,m ||||yj,m−1µyj,m ||

. (7)

1The original STOI measure includes a clipping stage which serves to limit the
extent to which a single frame can be detrimental to overall predicted intelligibility,
in cases where there is very little, or negative, correlation between the clean and
degraded envelopes. We have chosen not to include this stage in the NI-STOI
measure. The removal of the clipping mechanism has previously been shown
not to decrease performance markedly [26, 3].
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Fig. 2. The normalized cumulative sum of eigenvalues of C when
generated with each of the three different clean speech corpora.

The NI-STOI measure is then computed, as described in [16], as the
average normalized correlation between clean and degraded envelopes:

NI-STOI=
1

JM

∑
j,m

dj,m. (8)

In order to carry out direct predictions of intelligibility, in terms of a
percentage of correctly answered words, the output of the NI-STOI
measure is transformed with a logistic function [16]:

s̄(x)=
100%

1+eax+b
, (9)

where x is the input NI-STOI measure and s̄ is the estimated intelligi-
bility in percent. The coefficients a and b are fitted to available data by
maximum likelihood (as described in [27]).

3. RESULTS AND DISCUSSION

In this section we first show results from the training of a number of clean
speech models. We then evaluate the proposed non-intrusive intelligibility
measure by using it to predict the results of a listening experiment.

3.1. Clean Speech Models

To investigate the dependence on clean speech material, we train clean
speech models as described in Sec. 2.1, using three different sources of
clean speech: 1) all the sentences from the Dantale II corpus [28], 2) all
sentences with female speakers from the TIMIT training corpus [29], 3)
all sentences, male and female speakers, from the TIMIT training corpus.

Fig. 2 shows the cumulative sum of descending eigenvalues for the
three models. For all three models, the majority of the energy in the
modulation magnitude spectra can be accounted for by a single principal
component. This can be seen as an indication that the modulation domain
representation is a strong starting point for low dimensional represen-
tations of speech. Contrarily, it should be noted that this representation
includes neither the phase of the speech signal nor the phase of the
envelopes, and therefore cannot be used to reconstruct the original speech
signal. Fig. 3 shows the first six principal components, obtained by
training with the Dantale II speech material. Here, the first component, v1,
is most important, as it codes for the majority of the modulation energy.
The shape of this component indicates that most of the modulation energy
is contained at low modulation frequencies (i.e. less than 10 Hz). This
fits well with the rationale of the SRMR measure which considers low
frequency modulations to be carriers of speech information.

3.2. Experimental Data

To evaluate the performance of the proposed measure, we use it on a
set of data [30] which was also used for evaluating the original STOI
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Fig. 3. The first six principal components, obtained by training with
clean speech from the Dantale II corpus. The axes, as shown on the
lower left plot, are identical for all the plots. The j-axis denotes the 15
1/3-octave bands, while the l-axis denotes the 30 modulation frequency
bins resulting from the DFT of an envelope vector. Note that the plots
are symmetric on the l-axis.
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Fig. 4. Prediction performance in terms of RMSE, of NI-STOI, vs.,K,
for each of the three clean speech models. The conditions with café noise
were excluded in this analysis. See the text for details.

measure [16]. Intelligibility was measured for 15 normal hearing
subjects, using the Dantale II sentence material [28]. Four types of
noise was used: bottling factory hall noise, café noise, car noise,
and Speech Shaped Noise (SSN), each presented at three different
Signal to Noise Ratios (SNRs). The noisy signals were processed
with Ideal Binary Masks (IBMs) and Target Binary Masks (TBMs) at
eight different Relative Criterion (RC) values2 [30]. Two sentences
were presented with each combination of the above for a total of
15 subjects× 7 noise/mask combinations× 8 RC values× 3 SNRs×
2 repetitions=5040 sentences. The dataset is described in detail in [30].

3.3. Predictions

We first consider the overall performance of the NI-STOI measure, and
its dependency on the number of principal components,K, and the clean
speech material used for training. The conditions with café noise are not
included in this analysis, for reasons which are discussed later. Fig. 4
shows the Root-Mean-Square Error (RMSE) of predictions versus K.
The best performance is obtained with the Dantale II speech model. This
indicates that, in spite of the simplicity of the applied speech model, some

2The RC value is an algorithm parameter which determines the density of
the computed binary mask. See [30] for details.
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Fig. 5. NI-STOI predictions withK=1, compared with measured results. The clean speech model based on Dantale II sentences was used, and the
logistic mapping function has been fitted to all measured data except the conditions with café noise. Columns correspond to different noise- and
processing types, while rows correspond to different input SNRs, decreasing downwards. The horizontal axis shows the RC-value of the processing
algorithm. A low RC corresponds to mild processing while high RC corresponds to heavy processing. Unprocessed conditions are denoted ”UN”.

degree of talker specific modeling can occur. Contrarily, the TIMIT-based
speech models perform about equally well. This suggests that the models
do not capture gender specific effects. This may be due to the absence
of pitch information in the speech representation. With regards to the
number of principal components,K, there is a clear tendency that more
components lead to poorer performance. While performance is relatively
constant for K between one and ten, the best performance is obtained
for K = 1. This corresponds well with the observation, supported
by Fig. 2, that most of the modulation energy is captured by a single
principal component. Adding more components adds rather little clean
speech information, but may let more noise and distortion into the clean
envelope estimate.

Fig. 5 shows NI-STOI predictions for the individual conditions.
Again, the logistic mapping function was fitted without the café noise
conditions. The figure indicates a good overall fit between predictions
and measurements. Large deviations are seen for the conditions with café
noise at low RC-values (corresponding to little or no processing), where
intelligibility is predicted to be very high, while in fact it is rather low. It
should be noted that the café noise consists mainly of a single interfering
female talker. Since the NI-STOI measure is non-intrusive, it has no
means of determining which speaker is the target one (assuming that the
clean speech model is not talker specific). Therefore, one can argue that
any non-intrusive SIP method is bound to fail in such a condition, unless
supplied with additional information about which speaker is the target
one. This also explains why the overall quality of the logistic mapping
can be increased by excluding the café noise conditions during fitting.

In Table 1, we evaluate the proposed measure against a number
of existing measures. Being intrusive, the STOI measure outperforms
the NI-STOI measure in all cases. However, when excluding the café
noise conditions, the NI-STOI performance comes somewhat close to
that of the STOI measure. There are no major differences between the
results for the three different clean speech models. We also compare
to two variations of the SRMR measure which the authors have kindly
made available to the public: 1) the original SRMR measure [20], and
2) a later version of the measure which has been improved with the
aim of lowering the output variability [31]. While these measures are
mainly aimed at predicting intelligibility of reverberated speech, they
have been successfully applied for noisy and processed speech [5]. As
shown in Table 1, the improved SRMR measure outperforms the original

Pearson
correlation RMSE Kendall’s τ

STOI [16] 0.958 9.5% 0.824

÷
ca

fé

NI-STOI (Dantale II) 0.907 13.9% 0.777
NI-STOI (TIMIT F) 0.897 14.6% 0.764
NI-STOI (TIMIT M+F) 0.897 14.6% 0.768
SRMR [20] 0.311 42.0% 0.207
SRMR-norm [31] 0.550 31.6% 0.388
STOI [16] 0.959 9.4% 0.822

A
ll

co
nd

s.NI-STOI (Dantale II) 0.711 25.2% 0.529
NI-STOI (TIMIT F) 0.704 25.4% 0.516
NI-STOI (TIMIT M+F) 0.702 25.5% 0.513
SRMR [20] 0.237 45.2% 0.036
SRMR-norm [31] 0.394 38.6% 0.156

Table 1. Comparison of intelligibility measures with and without café
noise. In both cases, the logistic mapping function was fitted without café
noise. The NI-STOI measure was used withK=1.

one, especially when the café noise conditions are excluded. However,
the NI-STOI measure also consistently outperforms both measures. The
higher performance of the NI-STOI measure is especially pronounced in
the absence of the café noise conditions. This result should, however, be
viewed in the light of the fact that the NI-STOI measure is trained with
clean speech material, while the SRMR measure is not trained or fitted
in any manner (except for the logistic mapping, (9)).

4. CONCLUSIONS

We have proposed a non-intrusive intelligibility measure based on the
Short-Time Objective Intelligibility (STOI) measure. Similar to the
original STOI measure, the proposed measure is aimed at predicting the
intelligibility of noisy and non-linearly processed speech. The model
estimates unknown clean speech envelopes from degraded envelopes, by
use of a clean speech model. The performance of the proposed measure
was evaluated with a dataset consisting of speech in different types of
noise processed with binary masks. This indicated that the proposed
measure performs better than an existing non-intrusive measure, but not
as good as the original (intrusive) STOI measure.
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S. Hertzman, “Comparison of predictive measures of speech
recognition after noise reduction processing,” J. Acoust. Soc. Am.,
vol. 136, no. 3, pp. 1363–1374, Sept. 2014.

[18] L. Lightburn and M. Brookes, “A weighted STOI intelligibility
metric based on mutual information,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, Mar. 2016, pp. 5365–5369, IEEE.

[19] J. Jensen and C. Taal, “An algorithm for predicting the intelligibility
of speech masked by modulated noise maskers,” IEEE Trans.
on Audio, Speech and Language Processing, vol. 24, no. 11, pp.
2009–2022, 2016.

[20] T. H. Falk, C. Zheng, and W.-Y. Chan, “A Non-Intrusive Quality
and Intelligibility Measure of Reverberant and Dereverberated
Speech,” IEEE Trans. on Audio, Speech and Language Processing,
vol. 18, no. 7, pp. 1766–1774, Sept. 2010.

[21] F. Chen, O. Hazrati, and P. C. Loizou, “Predicting the intelligibility
of reverberant speech for cochlear implant listeners with a non-
intrusive intelligibility measure,” Biomedical Signal Processing
and Control, vol. 8, pp. 311–314, Dec. 2013.

[22] M. Karbasi, A. H. Abdelaziz, and D. Kolossa, “Twin HMM-based
non-intrusive speech intelligibility prediction,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, Sept. 2016, pp. 624–628, IEEE.

[23] D. Sharma, Y. Wang, and P. A. Naylor, “A data-driven non-
intrusive measure of speech quality and intelligibility,” Speech
Communication, vol. 80, pp. 84–94, Apr. 2016.

[24] “P.862: Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment of
narrow-band telephone networks and speech codecs,” 2001.

[25] B. C. Moore, An introduction to the psychology of hearing, Brill,
sixth edition, 2013.

[26] Cees H. Taal, R. C. Hendriks, and R. Heusdens, “Matching pursuit
for channel selection in coclear implants based on an intelligibility
metric,” in The European Signal Processing Conference (EU-
SIPCO), Bucharest, Romania, Aug. 2012, pp. 504–508, EURASIP.

[27] T. Brand and B. Kollmeier, “Efficient adaptive procedures for
threshold and concurrent slope estimates for psychophysics and
speech intelligibility tests,” J. Acoust. Soc. Am., vol. 111, no. 6,
pp. 2801–2810, June 2002.

[28] K. Wagener, J. L. Josvassen, and R. Ardenkjær, “Design, optimiza-
tion and evaluation of a Danish sentence test in noise,” International
Journal of Audiology, vol. 42, no. 1, pp. 10–17, Jan. 2003.

[29] DARPA, “TIMIT, acoustic-phonetic continuous speech corpus,” .

[30] U. Kjems, J. B. Boldt, M. S. Pedersen, T. Lunner, and D. Wang,
“Role of mask pattern in intelligibility of ideal binary-masked noisy
speech,” J. Acoust. Soc. Am., vol. 126, no. 3, pp. 1415–1426, Sept.
2009.

[31] J. F. Santos, M. Senoussaoui, and T. H. Falk, “An improved
non-intrusive intelligibility metric for noisy and reverberant speech,”
in International Workshop on Acoustic Signal Enhancement
(IWAENC), Juan les Pins, France, Sept. 2014, pp. 55–59, IEEE.

5089


