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ABSTRACT

Whispered speech is known to have different characteristics in
acoustics and articulation compared to neutral speech. In this study,
we compare the accuracy with which the articulation can be re-
covered from the acoustics of both types of speech, individually.
Acoustic-to-articulatory inversion (AAI) is performed with twelve
articulatory features using the deep neural network (DNN) with
data obtained from four subjects. We consider AAI in matched and
mis-matched train-test conditions, where the speech types in train-
ing and test are identical and different respectively. Experiments in
matched condition reveal that the AAI performance for whispered
speech drops significantly compared to that for neutral speech, only
for jaw, tongue tip and tongue body, consistently, for all four sub-
jects. This indicates that the whispered speech encodes information
about the rest of the articulators to a degree similar to that of the
neutral speech. Experiments in the mis-matched condition show a
consistent drop in the AAI performance compared to the matched
condition. This drop in performance from matched to mis-matched
condition is found be the highest for upper lip which indicates that
the upper lip movement could be encoded differently in whispered
speech compared to that in neutral speech.

Index Terms— acoustic-to-articulatory inversion, neutral speech,
whispered speech, electromagnetic articulography,

1. INTRODUCTION

Acoustic-to-articulatory inversion (AAI) is the task of recovering ar-
ticulatory movement from acoustic representations. AAI has been
shown to be useful for speech synthesis [1], and human computer
interaction applications [2, 3, 4], and automatic speech recognition
[5], especially in cases of noisy, spontaneous, or pathological speech
[6, 7, 8, 9]. A number of techniques have been proposed in the lit-
erature for AAI including codebook based procedures [10, 11], sta-
tistical modeling of the acoustic-articulatory map such as Gaussian
mixture model (GMM) [12], mixture density network (MDN) [13], a
trajectory hidden-Markov model (HMM) [14], generalized smooth-
ness criterion (GSC) [15] and neural network-based modeling of the
acoustic-to-articulatory mapping [9, 16] including deep neural net-
work (DNN) [17, 18].

All the works on AAI in the literature have been primarily on
neutral speech. To the best of our knowledge, there is no reported
result on AAI for whispered speech. Whispered speech often ap-
pears in private communication [19] and pathological situations [20,
21, 22]. There are several differences in the acoustics and the ar-
ticulation between the whispered and the neutral speech. For ex-
ample, there is no pitch in whispered speech [23, 24] and, hence, it
sounds like unvoiced speech [25]. It also differs from neutral speech
by the shift of formants in low frequencies [26, 27]. Similarly, there
are differences in articulation during whispering compared to neutral

speech [28, 29]. For example, whispered speech induces a constric-
tion in the false vocal folds region [27] unlike neutral speech. Sev-
eral studies on the articulatory space of whispered consonants reveal
that hyper-articulation occurs while whispering to ensure intelligi-
bility. Specifically, exaggerated movements of the tongue have been
reported using Electro-palatography [30, 31]. Differences in the lip
kinematics in whispered bilabial consonants compared to their neu-
tral counterparts have also been reported [32]. Due to such differ-
ences in acoustics and articulation, the acoustic-to-articulatory map
in whispered speech could be different from the that in the neutral
speech. It remains unclear how such differences could impact the
AAI performance for whispered speech.

In this work, we perform a comparative study between the AAI
performance for neutral and whispered speech. The goal of the study
is to quantify the accuracy with which different articulators are re-
covered from acoustics in these two types of speech. We also exam-
ine how an AAI model trained using a neutral acoustic-articulatory
map performs for inversion of whispered acoustics (mis-matched
train-test condition) and vice-versa. The study is conducted using
acoustic and articulatory data of four subjects for both neutral and
whispered speech. The articulatory data is obtained using Electro-
magnetic articulography (EMA). Experiments of AAI, separately for
each subject reveal that there is a significant drop in the AAI perfor-
mance for three out of twelve articulatory features in the case of
whispered speech compared to neutral speech. Similarly, experi-
ments with mis-matched train-test condition show that the AAI per-
formance drops by ∼20% (relative) compared to matched train-test
condition.

2. DATASET

To perform this study, we collected acoustic and articulatory move-
ment data for both neutral and whispered speech. A total four sub-
jects comprising three males (M1, M2, M3) and one female (F1)
participated in the data collection for this study. The age of M1, M2,
M3 and F1 was 19, 22, 24 and 28 years respectively. The native
language of M1, M2, M3 and F1 was American English, Kannada,
Bengali and Tamil respectively. None of the subjects were reported
to have any speech disorders. Prior to data collection, an informed
consent was obtained from each subject. The data collection was
approved by the ethics committee of the Indian Institute of Science
(IISc), Bangalore.

Movements of the articulators were recorded with an Electro-
magnetic articulograph, namely, AG501 [33], which is a widely used
machine for articulatory movements recording. AG501 has 24 chan-
nels to measure both the displacement and angular orientation of a
maximum of 24 sensors in horizontal, vertical and lateral directions
at a sampling rate varying from 250Hz to 1250Hz. In this study,
we use eight sensors placed at different articulators to get the data
at a rate of 250Hz. Out of eight sensors, two are connected at the
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back of two ears which are utilized for head correction. The remain-
ing six sensors are used to record the articulatory movements in the
midsagittal plane. Three sensors are attached on the articulators out-
side the oral cavity (upper lip (UL), Lower Lip (LL) and Jaw) and
the rest are placed inside the oral cavity (Tongue Tip (TT), Tongue
Body (TB) and Tongue Dorsum (TD)). A schematic diagram of the
placement of different sensors are shown in Fig. 1. It should be
noted that, the sensor movements along the midsaggittal plane are
captured by the X and Y co-ordinates of the positional data pro-
vided by AG501, which we use in the present study. Thus we obtain
a twelve dimensional articulatory feature vector representing sensor
positions namely, ULx, ULy , LLx, LLy , Jawx, Jawy , TTx, TTy ,
TBx, TBy , TDx, TDy .

UL

Jaw

LL TTTB TD

Upper Lip: UL
Lower Lip: LL
Jaw: Jaw
Tongue TIP:TT
Tongue Body: TB
Tongue Dorsum: TD

X

Y

Fig. 1. A schematic diagram demonstrating the placement of six
EMA sensors

In order to get a phonetically balanced dataset, the 460 English
sentences from MOCHA-TIMIT [34] are chosen as the stimuli for
the data collection. Since the native language of each subject is dif-
ferent, they are familiarized with the 460 sentences prior to record-
ing. This is done to avoid any pronunciation error, word insertion
and deletion during recording.

The data collection is carried out in a sound proof AG501
recording facility at the institute. After the attachment of sensors
onto the subjects’ articulators, subjects are provided with sufficient
time to get adjusted to speaking comfortably in the presence of
sensors. This is done through natural conversation and by reading a
few exemplar sentences. The sentences are projected onto a screen
in front of the subject at a distance of three meters during recording.
The subjects could navigate across different sentences by them-
selves. A t.bone EM9600 shotgun, unidirectional electret condenser
microphone [35] is placed near the subject to simultaneously record
the audio data at a rate of 48kHz, synchronous with the articulatory
movement data. Simultaneous audio and articulatory movement
recording is done sentence by sentence. Each utterance is carefully
scrutinized during the recording and the subjects are asked to repeat
in case of any errors. Since, for a set of 460 stimuli, the average
time taken for the recording turned out to be ∼ 2 hours, the entire
stimuli of 460 sentences is recorded in neutral and whispered speech
in two different sessions for the convenience of the subjects. Since,
whispered speech has lower intensity, there is a need for sound pres-
sure level calibration [36]. For this, we use a pure tone of known
intensity and a TES-1350A sound level meter to obtain the sound
pressure levels for every 100 sentences. As the recordings of neutral
and whispered speech are done in two different sessions, proper care
is taken to place the sensors in almost the same positions for the both
recordings. The subjects are given breaks whenever they reported
tiredness. For M1, M2, M3, and F1 the duration of the collected data
after removing silences before and after the sentences turned out to
be 18.90, 24.38, 21.83, 20.23 minutes for neutral speech and 21.87,
25.85, 24.52, 21.57 minutes for whispered speech, respectively.

3. ACOUSTIC-TO-ARTICULATORY INVERSION

Acoustic-to-articulatory inversion (AAI) is a regression problem,
where the relationship between input (acoustic features) and output
(articulatory features) is known to be nonlinear [18]. Since a DNN
can efficiently learn such a non-linear mapping, we follow a strategy
similar to that proposed by Wu et al [18]. Consider a DNN with L
layers, such that, the first and the last layers correspond to the input
layer and the output linear regression layer, respectively. Therefore,
given an input vector x at the first layer, we obtain the predicted
output vector yL at the output layer, L. The output of the lth hidden
layer yl, given the weight matrix Wl and hidden bias bl is given by,

yl(x) = φ(nl(x)), l = 2, . . . , L− 1, (1)

such that,
nl(x) = Wlyl−1(x) + bl, (2)

where, φ is the activation function. We define d to be the desired
output vector for training the DNN. Following an approach similar
to Wu et al. [18], we define the objective function to be minimized
as the mean squared error between the desired d and the predicted
yL. The weights of the DNN are learnt by the back-propagation al-
gorithm. The weights are updated using ADAM [37], a first-order
gradient-based optimization method, based on adaptive estimates
of lower-order moments, suitable for stochastic objective functions.
ADAM is a computationally efficient algorithm with less memory
requirements. DNN is implemented by using keras [38] and theano
[39] libraries.

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

The AAI is performed separately for neutral and whispered speech in
a subject dependent manner in which non-overlapping training and
test data are taken from the same subject. For every subject AAI is
performed in a 10-fold cross-validation setup where the entire set of
460 sentences are divided into 10 groups among which eight groups
are used for training, one group for validation and the remaining one
for testing. The recorded speech is downsampled to 16kHz and si-
lence before and after the sentence in every recorded utterance is re-
moved since, during silence, articulators can take any position caus-
ing more variability in the inverse mapping. As acoustic features,
we compute a 39-dim Mel frequency cepstral coefficients (MFCC)
vector for a window size of 20ms and a frame shift of 10ms fol-
lowed by cepstral mean subtraction and variance normalization [40].
In order to utilize the context information in the acoustic features for
the DNN training, MFCCs from five frames before and after every
frame are concatenated resulting in a 429-dim feature vector. The
articulatory position data have high frequency noise resulting from
EMA measurement error, but the articulatory movements are pre-
dominantly low-pass in nature [15]. Hence, the 12-dim articulatory
movement data is low-pass filtered with a cut-off frequency of 25Hz
as most of the energy of the articulatory movements is below 25Hz
for all articulators. The articulatory data is further downsampled to
100Hz to obtain frame synchronized MFCC and articulatory feature
vectors. Since the average position for each sensor could change
from utterance to utterance [41], we subtract the mean and divide by
the standard deviation (SD) within every utterance for each dimen-
sion of the articulatory feature vector.

For DNN, we have chosen a configuration of 3-hidden layers
with 300 units in each layer. The sigmoid function is used as the
activation function φ. 429-dim MFCC vector is given as the input to
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Neutral Speech Whispered Speech

Fig. 2. Correlation coefficient (ρ) and RMSE for AAI for neutral and whispered speech for four subjects in matched condition. AvgN and
AvgW denote ρ (column 1) and RMSE (column 2) averaged over all articulators. ◦ denotes the articulatory features for which there is no
significant (p <0.01) difference in AAI performance between neutral and whispered speech types.

first layer. The output layer is a linear regression layer with 36 units
corresponding to 12 articulatory features along with their velocity
and acceleration coefficients. The parameters for ADAM are chosen
as follows: learning rate=0.001, β1=0.9, β2=0.999 (β1, β2 ∈ [0, 1):
exponential decay rates for the moment estimates), ε = 1e-08 and
batch size of 128. For each fold, DNN weights are learnt using the
MFCCs and articulatory data from the training set.

For comparative study of neutral and whispered speech, we
choose two evaluation metrics, namely, the Root Mean Square Error
(RMSE) and the correlation coefficient (ρ) [15] for each articula-
tor separately. The predicted articulatory trajectory from DNN is
typically jagged in nature since no inter-frame smoothness criterion
explicitly employed while training the DNN. However, realistic
articulatory trajectories are smooth in nature. Thus, we low-pass
filter each articulatory trajectory predicted by the trained DNN. The
cut-off frequency of the low-pass filter is learnt using the validation
set. For this purpose, a range of cut-off frequencies from 5 to 25Hz
with a step of 1Hz is chosen. For each articulatory feature, the best
cut-off frequency is chosen by finding that frequency for which the
RMSE of the corresponding feature is minimum in the validation
set.

Apart from examining AAI performance in a matched condi-
tion (i.e., both train and test are either whisper or neutral data), we
examine the accuracy with which an AAI model, trained with one
type of speech, performs when the other type of speech is presented
as the test case (mis-matched condition). Suppose, for the i-th ar-
ticulator, ρio and ρic be the correlation coefficients in the matched
and mis-matched conditions respectively. We compute the percent-
age drop in correlation coefficient (PDCC) as follows: PDCCi =

(ρio−ρ
i
c)

ρio
×100. PDCC is not reported for RMSE since the sensor po-

sitions may not be identical in neutral and whispered speech record-
ings and, hence, the RMSE between original and predicted articula-
tory positions may not be directly comparable.

4.2. Results and discussion

Matched train-test condition: The barplot in Fig. 2 shows the aver-
age and SD of ρ and RMSE of AAI for twelve articulators separately
for four subjects considered in this study. The bar height indicates
the average value across ten folds while the errorbar shows SD. For
comparing the AAI performance between the neutral and the whis-
pered speech, two bars are plotted adjacent to each other for each
articulatory feature – the light and dark color bars denote the neutral
and whispered speech cases respectively. It is clear that there is a
significant drop in the ρ and significant increase in the RMSE values
when AAI is performed for the whispered speech compared to the
neutral speech for most of the articulatory features for all subjects.
For a few articulators, there is a significant drop in performance
across all subjects. For example, there is a significant (p < 0.01)
drop in ρ for Jawx, Jawy , TTx, TTy , TBy and TDy consis-
tently for all subjects with an a relative drop of 5.1%, 5.1%, 3.6%,
4.4%, 3.9%, and 3.6% respectively. Similarly, there is a significant
(p < 0.01) increase in RMSE for Jawx, TTy , and TBy consistently
for all subjects with a relative increase of 9.8%, 9.4%, and 10% re-
spectively. This indicates that, irrespective of the subject, both ρ
and RMSE for Jawx, TTy and TBy deteriorate when in the whis-
pered speech is used for AAI compared to when the neutral speech
is used. Interestingly, we see a subject specific deterioration in the
two metrics across different articulators. For example, the largest
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drop in ρ occurs for Jawx (7.9%), ULx (14.5%), ULx (11.2%),
and TTx (7.0%) for M1, M2, M3, and F1 respectively. Similarly,
the largest increase in RMSE occurs for ULy (7.0%), TDx (0.5%),
ULy (5.6%) and ULy (1.18%) for these four subjects respectively.
Although all subjects are fluent in English, variability in the results,
across subjects, could be due to the effect of different native lan-
guages (L1), which requires further investigation. The ρ and RMSE
averaged over all articulators are also shown in the respective sub-
plots in Fig. 2; these are denoted by AvgN and AvgW , for neutral
and whisper respectively. It is clear that, on average, the ρ drops by
0.02, 0.05, 0.02, and 0.03 (absolute) and RMSE increases by 0.01,
0.01, 0.00, and 0.01 (absolute) for M1, M2, M3, and F1 respec-
tively. This suggests that although whispered speech lacks voicing
and is less intelligible compared to neutral speech, the information
about the articulatory movements could be encoded in the spectral
characteristics of whispered speech.
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Fig. 4. Cut-off frequency optimized for each articulator on the vali-
dation set for both neutral and whispered speech in matched condi-
tion for four subjects. Bar height shows the cut-off frequency aver-
aged over 10 folds while errorbars indicate SD.

Mis-matched train-test condition: Fig. 3 shows the PDCC val-
ues for each articulator for both neutral and whisper test conditions
in case of four subjects. The bar height indicates the PDCC value
averaged over 10 folds, while the errorbar indicates the SD. It is in-
teresting to note that there is a consistent drop in the correlation coef-
ficients from the matched condition to the mismatched condition for
both neutral and whisper test cases. This indicates that the acoustic-
to-articulatory map for neutral and whispered speech are different
and one may not be used to predict the articulatory motion in case of
the other. The PDCC averaged across twelve articulators (last group
of four columns in Fig. 3) indicates that the average PDCCs are ap-
proximately 20% and they are similar for neutral and whisper test
conditions. Among twelve articulatory features, the PDCC is more
for ULx and ULy compared to others. This suggests that the move-
ment of UL could be significantly different in neutral and whispered
speech. This could also be due to the differences in the manner in
which the UL movement is encoded in neutral and whispered speech.

Smoothness of articulator movement: The optimal cut-off fre-
quencies obtained from the validation set for different articulators
are shown in Fig. 4 for both neutral and whispered speech for
four subjects. It is clear that the optimal cut-off frequency varies
across different articulators. This is because different articulators
are smooth to different degrees. Even for the same articulator the
optimal cut-off frequency varies across subjects. However, it is
interesting to observe that consistently for all articulators and sub-
jects, the optimal cut-off frequency for neutral speech is higher than
that for the whispered speech. This indicates that the articulatory
dynamics for whispered speech is more smooth compared to that
for the neutral speech. This is also reflected in the reduced speaking
rate of the subjects for the whispered speech compared to that for
the neutral speech. For example, the average neutral phoneme rates
(in phonemes per second) are 12.53, 9.83, 10.86, and 11.79 for M1,
M2, M3, F1 respectively, while these are 10.81, 9.19, 9.66, and
11.05 for whispered speech. This could be because of exaggerated
articulatory movements [30] and increase in the utterance duration
[36] that characterize whispered speech.

5. CONCLUSIONS

We perform a comparative study of AAI for neutral and whispered
speech using three male and one female subjects. We observe that
the articulatory movement is smoother for whispered speech com-
pared to that for neutral speech. It is also found that the AAI per-
formance drops significantly for Jawx, TTy , TBy in the case of
whispered speech compared to the neutral speech. Drop in the AAI
performance is observed for the whispered speech when the acous-
tics and articulation of neutral speech are used for training and vice-
versa. This suggests that the acoustic-to-articulatory mapping of
whispered speech is different from that of the neutral speech. Ex-
periments also reveal that although the information of the articula-
tory movements is retained in whispered speech, it is encoded differ-
ently, compared to that in neutral speech. Further investigation is re-
quired to examine the manner in which articulation during whispered
speech could be different from that for neutral speech and develop
an adaptation technique for both acoustics and articulation so that
AAI on the whispered (neutral) speech could be improved when the
AAI model is trained using the neutral (whispered) speech acoustics
and articulation.

Acknowledgement: We thank all subjects who participated in EMA
data collection.
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