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ABSTRACT

Dysarthria is a motor speech impairment, often characterized
by speech that is generally indiscernible by human listen-
ers. Assessment of the severity level of dysarthria provides
an understanding of the patient’s progression in the under-
lying cause and is essential for planning therapy, as well as
improving automatic dysarthric speech recognition. In this
paper, we propose a non-linguistic manner of automatic as-
sessment of severity levels using audio descriptors or a set
of features traditionally used to define timbre of musical in-
struments and have been modified to suit this purpose. Multi-
tapered spectral estimation based features were computed and
used for classification, in addition to the audio descriptors for
timbre. An Artificial Neural Network (ANN) was trained to
classify speech into various severity levels within Universal
Access dysarthric speech corpus and the TORGO database.
An average classification accuracy of 96.44% and 98.7% was
obtained for UA speech corpus and TORGO database respec-
tively.

Index Terms— Dysarthria, Severity level, Automatic as-
sessment, Audio descriptors, Multi-taper

1. INTRODUCTION

Dysarthria is a motor speech impairment, often characterized
by speech that is indiscernible by human listeners. Dysarthria
is generally caused by neurological diseases such as amy-
otropic lateral sclerosis (ALS), Parkinsons disease (PD), cere-
bral palsy or neurological trauma, manifesting as weakness,
paralysis, or a lack of co-ordination of the motor-speech sys-
tem, resulting in reduction in intelligibility, audibility, natu-
ralness, and efficiency of vocal communication. Assessment
of the severity level of dysarthria could be treated as a di-
agnostic step and is crucial to understand the patients pro-
gression in the underlying cause, to take clinical decision re-
garding the course of therapy or medication as well as to
plan speech therapy sessions whenever applicable. Sever-
ity assessment is undertaken by a trained speech language
pathologist, which turns out to be expensive and inconsis-
tent. On the other hand, an objective severity assessment has
the advantages of being cost effective, repeatable and paves

way for further automations such as improved speech recog-
nition of dysarthric speech. An understanding of severity
has contributed to improved speech recognition of dysarthric
speech as seen in [1, 2, 3]. In general, speech intelligibil-
ity has been used as an indicator of severity of speech disor-
ders [4]. Automatic intelligibility assessment has been car-
ried out broadly by either (a) Automatic Speech Recognition
(ASR) based methods that require reference data as well as
linguistic know how [4, 5, 6] or (b) blind intelligibility as-
sessment [7, 8, 9]. In [10], authors discuss the applicability of
acoustic and phonological ASR-free features for intelligibil-
ity assessment. Authors discuss classification of pathological
speech as intelligible or non-intelligible using scores from the
fusion of multiple subsystems addressing various aspects of
speech such as phonological, intonation etc. in [11]. Litera-
ture indicates that research is trending towards moving away
from language-specific ASR based methods to language in-
dependent automatic intelligibility assessment. While speech
quality and intelligibility are closely related, their relation-
ship is not trivial. Frenchay Dysarthria Assessment (FDA)
[12] defines several parameters that need to be considered
for automatic assessment of the severity level of dysarthria,
of which intelligibility is but one. For Parkinson’s disease,
voice quality symptoms are visible earlier than intelligibility
symptoms. Hence it is desirable to assess dysarthria sever-
ity level using the speech utterance at the voice quality level
in addition to the granular level of articulatory accuracy. In
this paper, we propose the applicability of a set of acoustic
descriptors that have been used to characterize the timbre of
a musical instrument [13]. Timbre is the quality of music
or voice that renders each one as distinct. We investigate
the use of features suggested in [13] for dysarthria severity
classification. Additionally, we compute the acoustic descrip-
tors using a multi-taper based spectral estimation [14] for im-
proved spectral resolution. Significant improvement in sever-
ity level assessment was seen using the multi-taper based tim-
bre acoustic descriptors as compared to the work in literature,
wherein authors reported 95% classification accuracy using
feature fusion on Universal Access (UA) Dysarthric Speech
Corpus [9] and in [15] authors reported 93.2% correct clas-
sification rate of dysarthria severity levels on TORGO and
Nemours database.
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The rest of the paper is organized as follows. Section 2
describes the audio descriptors and their role in dysarthric
speech severity classification, Section 3 discusses the sever-
ity classification methodology and a description of the data
used, Section 4 discusses the experimental setup used, Sec-
tion 5 describes the results and analysis and we conclude in
Section 6.

2. AUDIO DESCRIPTORS

In this paper, we use audio descriptors that have been de-
signed for timbre characterization of a musical instrument as
a set of features for dysarthric speech severity classification.
Timbre is a multidimensional attribute, encompassing a set
of auditory descriptors in addition to pitch, loudness, dura-
tion, and spatial position [13]. In [13], authors define a set of
audio descriptors that can be categorized into global descrip-
tors, that are computed across the utterance and time-varying
descriptors, that are extracted within each frame of the utter-
ance. Audio descriptors are computed various representations
of the speech utterance such as (1) Temporal Energy Enve-
lope (2) Short term Fourier transform (STFT) (3) Equivalent
rectangular Bandwidth (ERB) based auditory model and (4)
Harmonics. For each audio descriptor as shown in Table 1,
median and interquartile range have been considered.

Table 1. Audio descriptors used for severity classification
Serial Audio Serial Audio

Number Descriptor Number Descriptor
1 Attack 17 Spectral Slope
2 Decay 18 Spectral Decrease
3 Log-Attack time 19 Spectral Rolloff
4 Attack-slope 20 Specto temporal variation
5 Decrease slope 21 Frame energy
6 Temporal Centroid 22 Spectral Flatness
7 Effective Duration 23 Spectral Crest
8 Frequency of Energy Modulation 24 Harmonic Energy
9 Amplitude of Energy Modulation 25 Noise Energy
10 RMS-Energy Envelope 26 Noisiness
11 Autocorrelation-12 coefficients 27 Fundamental Frequency
12 Zero Crossing Rate 28 Inharmonicity
13 Spectral Centroid 29 Tristimulus (3 coefficients)
14 Spectral Spread 30 Harmonic Spectral Deviation
15 Spectral Skewness 31 Odd to Even Harmonic Ratio
16 Spectral Kurtosis

2.1. Multi-taper spectral estimation

In our work we investigate the usage of multi-taper spectral
estimation to compute STFT and Harmonic based features.
Conventional spectral estimation of speech uses a Hamming-
window or a single taper. Using a single taper windowing re-
sults in a significant portion of the signal being discarded and
the data points at the extremes being down-weighted, giving
a high variance for the direct spectral estimate [16]. Hence,
a multi-taper method is used so that the statistical informa-
tion lost by using just one taper is partially recovered by us-
ing multiple windows for the same duration. The multi-taper

spectrum is thus a weighted sum of the several tapered peri-
odograms. Spectral estimation of a signal S using multi-taper
method is as follows,

S(m, k) =
1

M

M−1∑
p=0

λ(p)

N−1∑
j=0

wp(j)s(m, j)e
−i2π k

N j (1)

where wp(j) is the pth data taper function, M is the number
of tapers and λ(p) is the weight corresponding to the pth ta-
per, N is the speech frame length and k is the FFT points.
In practice, weights are designed so as to compensate for in-
creased energy loss at higher order tapers.

10 feature sets have been used for dysarthria severity clas-
sification is as shown in Table 2.

Table 2. Feature sets used for severity classification
Feature Dimension Input Acoustic

Set Representation Descriptors
F1 22 Temporal Energy Envelope 1-10
F2 26 Audio Signal 11-12
F3 22 STFT Magnitude 13-23
F4 22 STFT Power 13-23
F5 22 ERB FFT 13-23
F6 22 ERB Gammatone 13-23
F7 38 Harmonic 15-31
F8 22 Multi-taper Magnitude 13-23
F9 22 Multi-taper Power 13-23
F10 38 Multi-taper Harmonic 15-31

3. SEVERITY CLASSIFICATION

In this paper, Artificial Neural Network (ANN) has been used
as a classifier for dysarthria severity classification. The ANN
consists of three layers, an input layer, a hidden layer and an
output layer. The input layer comprises I nodes equivalent
to the dimension of the input feature set being used and the
output layer comprises K nodes, the number of classes into
which dysarthria severity is being classified. The number of
nodes in the hidden layer J is varied based on the dimension
of the input feature set being used. ANN configuration is as
shown in the Figure 1.

3.1. Data

The proposed technique was validated using two differ-
ent dysarthric databases i.e., (a) Universal Access (UA)
Dysarthric Speech Corpus [17] and (b) TORGO database
[18].

3.1.1. UA Dysarthric Speech Corpus

UA speech corpus comprises data from 13 healthy control
(HC) speakers and 15 dysarthric (DYS) speakers with cere-
bral palsy. The recording material consisted of 455 distinct
words with 10 digits, 26 international radio alphabets, 19
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Fig. 1. ANN configuration for severity classification

computer commands, 100 common words and 300 uncom-
mon words that were distributed into three blocks. Three
blocks of data were collected for each speaker such that
in each block speaker recorded the digits, radio alphabets,
computer commands, common words and 100 of the uncom-
mon words. Thus each speaker recorded 765 isolated words.
Speech intelligibility ratings for each dysarthric speaker, as
assessed by five naive listeners is also included in the corpus.
Speakers were divided into four different categories based on
the intelligibility, namely high, mid, low and very low. We
use this information to classify dysarthria severity level.

3.1.2. TORGO

The TORGO database of dysarthric articulation consists of
aligned acoustics and measured 3D articulatory features from
speakers with either cerebral palsy (CP) or amyotrophic lat-
eral sclerosis (ALS). Torgo database consists of 8 dysarthric
(DYS) speakers (3 females and 5 males) and 7 non-dysarthric
or healthy control (HC) speakers (3 females and 4 males) as a
control group. The acoustic data were recorded through two
different microphones; an array microphone with 8 recording
elements placed at a distance of 61 cm facing the speaker,
and a head-mounted microphone. The corpus consists of (1)
non-words, (2) Short words such as digits, international ra-
dio alphabets, (3) Restricted sentences, (4) Unrestricted sen-
tences. The motor functions of each subject were assessed ac-
cording to the standardized Frenchay Dysarthria Assessment
(FDA) [12] by a speech-language pathologist. FDA measures
28 relevant perceptual dimensions of speech grouped into 8
categories, namely reflex, respiration, lips, jaw, soft palate,
laryngeal, tongue, and intelligibility.

The speaker wise severity classification for both UA
Speech and TORGO database is as shown in the Table 3. The
severity classification for UA speech database is based on
intelligibility whereas for TORGO database the overall FDA
score for the dysarthric speakers as per [15] is used.

Table 3. Speaker-wise severity distribution for UASPEECH
and TORGO database (F** for female speakers, M** for
male speakers)

Severity UA Speech TORGO
Very Low F05, M08, M09, M10, M14 F03, F04, M03
Low F04, M05, M11 F01, M05
Medium F02,M07, M16 M01, M02, M04
High F03, M04, M12, M01 —–

4. EXPERIMENTAL SETUP

4.1. Data

For the UA Speech corpus, a total of 2812 dysarthric utter-
ances with utterances corresponding to 10 digits and 19 com-
puter commands from block B1 and B2 for training and test-
ing of the classifier has been used.

For the TORGO database, we have used total of 1540
dysarthric utterances for experimentation.

4.2. Multi-taper Spectral Estimation

Multi-taper spectral estimation was done using Discrete Pro-
late Spheroidal sequences (DPSS) or Thomson or Slepian ta-
pers [14] with 6 orthonormal tapers.

wp(j) =
sin[ωcT (p− j)]

(p− j)
, j = 0, 1, . . . , N − 1 (2)

where N denotes the desired window length in samples, ωc
is the desired main-lobe cut-off frequency in radians per sec-
ond, and T is the sampling period in seconds. Twelve dimen-
sional Mel Frequency Cepstral Coefficients (MFCC) features
were computed using Thomson multi-taper spectral estima-
tion with a 30ms window and a 10ms shift rate.

4.3. ANN configuration

Classification was carried out for 8 different settings of hid-
den layer neurons. For the hidden layer, number of neu-
rons J or nodes is varied based on the dimension I of
the input feature set, and is given as J = I ? m, where
m ∈ {0.5, 0.66, 0.75, 0.8, 0.83, 1, 1.25, 1.5}. The number
of output nodes K = 4 and 3 for UA speech and TORGO
database respectively. For both UA Speech and TORGO
data, 70% of the data was used for training the network, 15%
was used for validation and 15% was used for testing.

5. RESULTS AND DISCUSSION

Severity classification was carried out using the experimen-
tal setup described in Section 4. It was observed that fea-
ture set F1 corresponding to Temporal Energy Envelope per-
formed poorly as compared to the other feature sets. Feature
sets STFT magnitude (F3), ERB FFT (F4), ERB Gammatone
(F5), Multi-taper Harmonics (F10) performed well for all set-
tings. This could be attributed to the fact that this is a global
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Fig. 2. Feature-wise classification accuracy for varying hidden layer nodes

measure and hence is unable to characterize the severity ad-
equately. Also, for each of the feature sets, similar accura-
cies were observed across validation and training set, indicat-
ing that there is no overfitting or underfitting. The classifi-
cation accuracy for individual feature sets F1-F10 across dif-
ferent numbers of hidden nodes (varied as discussed in Sec-
tion 4), is as seen in the Figure 2. Multi-taper spectral esti-
mation out performed the Hamming window based Harmon-
ics audio descriptors (F10) in the severity classification accu-
racy. This could be attributed to the inherent noise robustness
of the multi-taper spectral estimation [19]. We obtained the
best classification accuracy when the fusion of all the features
from F1-F6 and F10 (Proposed) were used together to give
a comprehensive feature of dimension 164. Here we replace
the Harmonic timbre feature set F7 with multi-taper based
Harmonic feature set F10. Severity wise classification accu-
racy for the above fusion set is given as in Table 4. For both

Table 4. Severity-wise classification acuracy for UA Speech
and TORGO database

Severity UA Speech TORGO
Very Low 96.1 99.1
Low 95.1 98.4
Medium 96.7 97.0
High 95.7 —–

UA Speech and TORGO database, the overall classification
accuracy as well the classification accuracy at feature level
outperforms the accuracies cited in recent works [9][15].

6. CONCLUSION

Dysarthria is a motor speech impairment, often characterized
by speech that is generally indiscernible by human listeners.
Assessment of the severity level of dysarthria is essential for
planning therapy, as well as improving automatic dysarthric
speech recognition. Objective assessment of severity level
or intelligibility of dysarthric speech is essential with reli-
ability, speed and consistency in view. Literature suggests
that automatic speech recognition of dysarthric speech can
be improved if prior knowledge of severity of dysarthria is
available. In this paper, we propose a non-linguistic tech-
nique of automatic assessment of severity levels using audio
descriptors or a set of features traditionally used to define
timbre of musical instruments. Additionally, we use multi-
taper based spectral estimation to compute the spectral and
harmonic features. An Artificial Neural Network (ANN) was
trained to classify speech into various severity levels within
Universal Access dysarthric speech corpus and the TORGO
database. It was observed that classification accuracies using
multi-taper based harmonics was higher than the Hamming
window based harmonic features. A fusion of feature sets F1-
F6 and F10 (proposed) to give a comprehensive feature set of
dimension 164 provided an average classification accuracy of
96.44% for UA speech corpus 98.7% for TORGO database
respectively. For both UA Speech and TORGO database, the
overall classification accuracy as well the classification accu-
racy at feature level outperforms the accuracies cited in one of
most recent works [9, 15] for these dysarthric speech corpora.
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