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ABSTRACT

This study analyzes signals recorded using a neck-surface ac-
celerometer from subjects producing speech with different
voice modes. The purpose is to explore if the recorded wave-
forms can capture the glottal vibratory patterns which can be
related to the movement of the vocal folds and thus voice
quality. The accelerometer waveforms do not contain the
supraglottal resonances, and these characteristics make the
proposed method suitable for real-life voice quality assess-
ment and monitoring as it does not breach patient privacy. The
experiments with a Gaussian mexture model classifier demon-
strate that different voice qualities produce distinctly differ-
ent accelerometer waveforms. The system achieved 80.2%
and 89.5% for frame- and utterance-level accuracy, respec-
tively, for classifying among modal, breathy, pressed, and
rough voice modes using a speaker-dependent classifier. Fi-
nally, the article presents characteristic waveforms for each
modality and discusses their attributes.

Index Terms— voice mode classification, laryngeal ac-
celerometer, GMM, MFCC

1. INTRODUCTION

Voice quality assessment (VQA) is defined subjectively
through listening tests using one of several auditory-perceptual
protocols [1, 2]. For example, the Consensus Auditory-
Perceptual Evaluation of Voice CAPE-V protocol seeks to
document an individual’s voice quality along several dimen-
sions, including roughness, breathiness, strain, pitch, and
loudness deviation. Clinical voice specialists evaluate sub-
jects using a visual analog scale. Automatic VQA systems are
often designed to infer the same distortion parameters [3, 4].
Although speech is the most readily available signal, alterna-
tive measurement methods may be more suitable for objective
voice quality assessment if they were to more directly capture
voice source characteristics. The electroglottogram captures
an indirect estimate of the vocal fold contact area, which is
related to the voice source. Inverse filtering the oral airflow
or acoustic microphone speech signal is more closely related
to the voice source signal that enters the vocal tract, where it

is modulated to carry the linguistic articulatory content and
radiates from the lips as the acoustic speech signal.

Better insight into clinical problems can be gained by ana-
lyzing signals that can be more directly associated with vocal
fold dynamics. Some physiological parameters which con-
tribute to the overall quality of the source signal are stiffness
and thickness of the vocal folds, their abduction or adduc-
tion, elevation of the larynx and the constriction of supra-
glottal structures. These structural differences cause distinct
movement patterns in the vocal folds, which in turn produce
distinct phonation types. However, the approach also requires
a sophisticated measuring device, professional manipulation,
and laboratory settings in order to obtain proper waveforms.

The surface accelerometer [5] is an indirect measurement
of vocal fold aerodynamics [6]. The mechanical vibrations
which naturally occur during phonation are transmitted as
sound waves through the trachea to the neck surface. Pre-
vious works have demonstrated that accelerometer signals
contain both glottal and subglottal vibratory patters [7], but
no supraglottal resonances when positioned appropriately.
Accelerometer is also robust against background acoustic
noises. These attributes makes a neck-surface accelerometer
ideal for real-life voice quality assessment and monitoring.

This study follows on our work with EGG [8] that showed
that distinct phonation modes produce distinct waveforms.
This work studies the mechanical vibrations which occur dur-
ing phonation and also, the number of participants within
this study was greater. A similar approach was presented
in [9, 10], but all of these studies worked with speech or
inverse-filtered speech. The authors in [11] have also demon-
strated that accelerometer signals can be used to differentiate
vocal hyperfunction from normal patterns of vocal behavior.
This is one of the few studies that analyzes the use of neck-
surface accelerometer in the task of voice modality classifi-
cation. The study provides examples of prototype waveforms
and compares them with EGG waveforms, which are much
more researched.

The article is structured as follows. Section 2 describes
the data acquisition protocol. Section 3 describes the per-
formed classification task and experimental setup. Section 4
presents the results and relates the reached conclusion to find-
ings reached on other speech-related signals. The conclusion
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is summarized in Section 5.

2. DATABASE

The presented experiments were performed on the "InLab"
part of Ambulatory Voice Monitoring database, which con-
tains recordings collected in acoustically controlled condi-
tions [12]. The signals were acquired for normal and patho-
logical subjects, but only normal participants were used for
the purpose of this study. The database contains the elec-
troglottograph, accelerometer, acoustic, oral air pressure,
and oral air flow signals. All signals were sampled at fs =
20 kHz, time-synchronized and amplitude-normalized. The
neck-surface accelerometer [13] was attached under the thy-
roid prominence and above the collarbone. The accelerometer
was an off-the-shelf single-axis sensor (BU-27135, Knowles
Electronics, Itasca, IL).

All subjects were verified to have normal vocal status
using laryngeal endoscopy and auditory-perceptual judgment
by a speech-language pathologist. Each subject recorded
sustained vowels (/a/, /e/, /i/, /o/, /u/). The vowels were
recorded at a comfortable pitch and loudness (modal voice),
and in three non-modal voice qualities: breathy, pressed, and
rough [14]. Four male and 24 female subjects were selected.

3. CLASSIFICATION TASK SETUP

The accelerometer signals can be initially characterized by
their short-time discrete Fourier transform. As a consequence,
our feature extraction setup used standard Mel-frequency cep-
stral coefficients (MFCCs) that have been proven to model
voice pathology using speech signals [15, 16, 17, 18]. The
frame length was 32 ms with a frame shift of 16 ms. The Mel-
filter bank contained 32 filters and fmin was set to 50 Hz and
fmax to 4000 Hz. The feature vector contained only static
MFCCs with 0th coefficient. We did not employ any voice
activity detection (VAD) prior to feature extraction to cut out
the silence frames. Table 1 summarizes the total number of
signals and extracted frames for each voice mode. The classi-
fication task was performed using a Gaussian mixture model
(GMM) classifier with two mixtures. The GMM parameters
Θ = {π, µ,Σ}were initialized for each class separately using
the maximum-likelihood method and then re-estimated using
the expectation-maximization algorithm. The choice to use
only two mixtures was motivated by our previous decision
of not using VAD. One mixture modeled the distribution of
voice frames while the second mixture modeled the outlying
data, which were identified to belong to the silence frames.
The GMMs were described by its full covariance matrices Σ.

The evaluation was carried out with a four-class classi-
fication approach. The speaker-dependent classification was
always done by holding out one utterance while training the
models on the rest and then repeating the whole process for

Table 1. Number of signals and frames for each voice mode
Modal Breathy Pressed Rough

Signals 351 172 196 213
Frames 78 298 31 166 28 093 30 620

all signals. The results were evaluated in terms of classifi-
cation accuracy [%] at either frame or utterance level. The
utterance-level accuracy was based on performing hard clas-
sification at the frame level and selecting the most frequently
occurring class. This approach gave insight into the distribu-
tion of misclassified frames within each token.

4. RESULTS AND DISCUSSION

The initial analysis was focused on determining the optimal
number of MFCCs for the given number of mixtures. Fig-
ure 1 summarizes the frame- and utterance-level results start-
ing with just a single, 0th coefficient and ending with the the
total number of 30 MFCCs. The initial values with just the 0th

coefficient were relatively good at 60.7% and 68.4% for the
frame- and utterance-level respectively. The accuracy curves
begin to rise sharply and then plateau for approximately 6-10
MFCCs. The optimal number of MFCCs for the voice mode
classification task using the neck-surface accelerometer was
found to be 16, for which the frame- and utterance-level ac-
curacy reached 80.2% and 89.5%, respectively. Finally, the
curves begin to fall for more than than 16-20 MFCCs.
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Fig. 1. Accuracy [%] for different number of MFCC.

A closer look at the nature of errors for misclassified ut-
terances revealed that the posterior values of frames belong-
ing to the (incorrectly) assigned class was ≥ 0.75 for roughly
one half of them. This behavior shows that the classifiers dis-
played a trend to misassign the frames, and thus whole utter-
ances, predominantly into a single class. This trend might in-
dicate that the subjects did not produce a token with a pure
voice mode (in practice, speakers typically exhibit degrees
of all non-modal voice types when attempting to produce a
vowel with only one voice mode). On the other hand, about
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a quarter of frames had a uniform distribution of posteriors
across the classes, which demonstrated the limitations of the
proposed classification method and accelerometer data.

The current analysis would indicate than just the wave-
form energy, which is incorporated into the 0th coefficient,
carried most of the information about the voice mode. How-
ever, in our subsequent experiment, we removed this coeffi-
cient out of the feature vector and performed the classification
task once again. Table 2 summarizes the best achieved results
for feature vectors with and without the 0th coefficient. It can
be noted that this feature vector achieved practically the same
frame- and utterance-level accuracy. The only difference was
that more coefficients were needed to reach the optimal per-
formance. As a results, all further analysis will be presented
for feature vectors which contained c[0].

Table 2. Influence of c[0] coefficient on accuracy
Opt. num. Acc. [%]
of MFCC Frame Utterance

with c[0] 16 80.2 89.5
without c[0] 18 80.1 89.9

The confusion matrix for the frame-level accuracy is sum-
marized in Table 3 and there are several interesting things that
can be taken from it. First, the highest classification accuracy
of 88.3% was achieved for the breathy voice mode. It was
then followed by the modal, rough, and pressed voice modes.
Taking a closer look at the confusion rates between voice
mode revealed that the pressed and rough types were far more
often confused with each other than with either breathy or
modal. The misclassification rates reached 14.9% for pressed
being classified as rough and 13.2% the other way around.
This observation leads to the conclusion that the physiologi-
cal processes which generated rough and pressed voice modes
produced similar vocal fold vibratory properties captured by
the accelerometer as similar waveforms. A similarly strong
trend was not observed between the breathy and modal types,
when only the modal voice showed statistically significant
preference for breathy type. The utterance-level confusion
matrix is summarized in Table 4, and the results there follow
the same trends as from the utterance-level classification.

Table 3. Frame-level accuracy [%] matrix.
Recognized

B M P R

A
ct

ua
l

B 88.3 4 4.3 3.4
M 7.6 86.2 3.6 2.6
P 6.3 8.2 70.6 14.9
R 6.5 4.6 13.2 75.7

The prototype waveforms were estimated as a likelihood
weighted average from all frames for the best performing
speaker in the database, using the following formula:

Table 4. Utterance-level accuracy [%] matrix.
Recognized

B M P R

A
ct

ua
l

B 95.9 0.6 3 0.5
M 3.7 93.7 2 0.6
P 3.6 5.1 80.6 10.7
R 1.4 1.4 9.4 87.8

Oproto(j) =
1

N

N∑
i=1

p(Oi|j)∑
k p(Oi|k)

Oi, (1)

where Oproto(j) is the prototype observation vector for class
j, and p(Oi|j) is the probability of vector Oi being gener-
ated by class j. The first problem was a difference in pitch
across frames and the signals. A closer look revealed that the
analyzed subjects produced vowels which had a fairly simi-
lar average fundamental frequency (f o). The relative variance
reached 2.1±1.7, 3.3±2.9, 5±7.3 and 11.7±9.2 [%] for the
breathy, modal, press and rough voice mode respectively. We
chose to report relative values rather than the absolutes in Hz
in order to penalize subjects with low fo, as the error in fo
estimation was more severe for them. The only notable dif-
ference was the rough voice mode, which displayed a 11.7%
relative difference. This observation was in line with the fact
that rough voices often lack a periodic structure.

Fundamental frequency analysis also indicates that fo var-
ied significantly across frames for which signals had to be
synchronized in order to obtain prototype waveforms. The
subharmonic-to-harmonic pitch detection algorithm [19] was
used to estimate the fo within each frame. The frames had
their time axis stretched or compressed to accommodate for
the difference between the reference and current frame. A
secondary problem was the difference in phase, which was
effectively solved using the autocorrelation function. The es-
timate was done using frames from utterances which were la-
beled a priori as belonging to that particular class. The frames
were also averaged in relation to their number so that the re-
sulting waveforms could be compared in terms of their ampli-
tude. Figure 2 illustrates the estimated prototype waveforms
for each voice mode for the best performing speaker, and Fig-
ure 3 illustrates the respective power spectra.

The breathy, modal, and pressed voice styles displayed a
clearly periodic structure. The period for modal voice was ap-
proximately 5 ms and approximately 6 ms for the breathy and
pressed speech. The rough voice mode displayed the highest
period of about 7.5 ms. Voice modes also differed in their
amplitudes as the rough and breathy types, especially, had a
relatively small amplitude. The low-amplitude behavior for
breathy style was somewhat expected. Its physiological pro-
cess is characterized by a minimal vibration of the vocal folds,
which translates into a low-energy vibration radiated through
the neck tissue. The measured waveform also lacked any
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distinct shape aside from the onset and offset slopes. The
modal and pressed types were characterized by significant
peaks which separated the glottal periods. The spectrum of
the pressed waveforms was much richer in higher harmonics
than other waveforms. This observation was consistent with
general characteristics of the pressed voice mode. The rough
waveform was similar in shape to the pressed type but also
contained multiple significant peaks in a single period.
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Fig. 2. Likelihood-averaged accelerometer waveforms for
each voice mode.

It is acknowledged that participants potentially produced
varying degrees of the prompted voice qualities. Recordings
were thus screened by an expert listener with no prior knowl-
edge of prompted quality using the CAPE-V protocol to ob-
tain dichotomous perception labels. Cohen’s κwas 0.6 (good-
to-strong agreement) between the prompted and perception
labels. Future work warrants a formal auditory-perceptual
evaluation of the tokens.

5. CONCLUSION

This article presented a analysis of subglottal neck-surface
accelerometer signals during voicing. Results demonstrated
that vocal fold vibratory patterns were transferred to the neck
surface and adequately captured by the accelerometer for the
purpose of voice modality classification. The speaker-specific
system achieved 80.2% and 89.5% accuracy at the frame and
utterance level, respectively. Pressed and rough voice modes
were predominantly confused with each other. No such trend
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Fig. 3. Power spectra of the prototype waveforms for each
voice mode.

was found between breathy and modal voice modes. The
article also presented prototype waveforms for each modal-
ity, which were computed as the likelihood-weighted wave-
forms. Some of the estimated accelerometer waveforms dis-
played characteristics that have been previously described for
acoustic or electroglottograph waveforms. The breathy wave-
form was characterized by its low amplitude and steep spec-
tral rolloff, and the spectrum of the pressed waveform con-
tained significant higher harmonics. These findings demon-
strate the potential of using accelerometer sensors for voice
quality assessment in naturalistic environments.
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