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ABSTRACT
Objective assessment of pathological speech is an importan-
t part of existing systems for automatic diagnosis and treat-
ment of various speech disorders. In this paper, we propose a
new regression method for this application. Rather than treat-
ing speech samples from each speaker as individual data in-
stances, we treat each speaker’s data as a probability distribu-
tion. We propose a simple non-parametric learning method to
make predictions for out-of-sample speakers based on a prob-
ability distance measure to the speakers in the training set.
This is in contrast to traditional learning methods that rely
on Euclidean distances between individual instances. We e-
valuate the method on two pathological speech data sets with
promising results.

Index Terms— Distribution regression, divergence, ob-
jective assessment, speech pathology

1. INTRODUCTION

Clinical assessment in speech therapy is predominantly con-
ducted through subjective tests performed by trained speech-
language pathologists (SLPs). Subjective evaluations, how-
ever, can be inconsistent and unrepeatable [1], resulting in an
inherent ambiguity about whether the patient is improving as
a result of the therapy. One solution to this reliability prob-
lem has been the development of objective outcome measures
that can automatically estimate how atypical a speech signal
sounds to the average listener. In other words, these algo-
rithms estimate an objective measure of the perceived severity
of the speech disorder [2, 3, 4]. Existing objective assessment
systems are usually based on regression analysis [3, 5, 6].

Objective outcome measures based on regression analy-
sis require collecting speech samples from patients and hav-
ing experts (e.g. SLPs) label the severity of each speaker on
a subjective scale. Using this labeled data set, a data-driven
model can be built to predict the intelligibility/severity of new
speakers. A number of papers have appeared on this topic in
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Fig. 1. A toy example shows the problem of existing methods
and how we want to solve it.

the last few years. These studies have either focused on de-
veloping new and more sensitive features that measure vari-
ous aspects of phonation, articulation, and prosody [7, 8]; or
on developing more advanced machine learning algorithms to
address the same problem[9, 10].

However, there is one problem ignored by most existing
data-driven regression models in this area. Evaluators usual-
ly rate speech at the speaker level rather than the sentence
level, but there are often multiple stimuli produced by the
same speaker. For example, in pathological speech, the da-
ta from each speaker often includes individual words, short
sentences, and paragraphs. To fit this to the traditional single-
instance learning paradigm, existing methods simply assign
all sentences from the same speaker the same label, or they
average the features from multiple sentences into a single in-
stance [11]. This strategy may work well if the variation of
each speaker’s data is small; however this is rarely the case
since there are often differences in recording conditions, spo-
ken content, etc. from sentence to sentence that impact the
distribution of the data.

We show a synthetic example in Fig. 1 that depicts this
problem. Let us consider a single feature extracted from mul-
tiple sentences spoken by four speakers. Each of the four s-
peakers is evaluated by an SLP as having a different severity
index (value on the y-axis). We plot the multiple instances
from each speaker (the one-dimensional feature along the x-
axis) against the severity index (the value on the y-axis). If
our aim is to predict the severity of the speaker based on the
features, one can imagine multiple reasonable regression fit-
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s to the data, depending on the fitting criterion. We propose
to develop criteria that consider the data from each speaker
as a distribution rather than individual instances ( see Fig. 1
right). By considering the data as samples drawn from an un-
known distribution, we can develop cost functions based on
distances between distributions rather than distances between
individual instances.

Relation to previous work: In this paper, we propose a
new method for objective assessment of pathological speech
based on distribution regression. Instead of considering utter-
ances from the same speaker as individual instances, we mod-
el the data from each speaker as a probability density function
(PDF) and consider the multiple instances as samples drawn
from that PDF. This approach has been explored in multiple
instance classification [12, 13]; here we extend it to regression
and evaluate it on an application where we predict the severity
of a dysarthric speaker directly from the speech samples.

We evaluate the algorithm on the Parkinson’s condition
database from the 2015 INTERSPEECH Computational Par-
alinguistics Challenge and a dysarthric speech corpus collect-
ed in our lab. We observe that the method is particularly use-
ful for cases where there exist mismatched recording condi-
tions between the training corpus and the test corpus.

2. PROPOSED ALGORITHM

We consider a database ofNs speakers with n speech samples
from speaker k, k ∈ [1 . . . Ns]. We assume that we extract a
set of features from every speech sample from every speaker
and denote the resulting feature vector by xki , i ∈ [1 . . . n]
(ith sample of speaker k). In multiple instance regression, s-
peaker k has a set of feature vectors Sk = {xk1 , xk2 , ..., xkn}
and only one label Yk. We denote the labeled training data by
S = {(S1, Y1), (S2, Y2), . . . , (SNs , YNs)}. In examples in-
volving speech, the multiple feature vectors could represent
different sentences from the same speaker, different record-
ing conditions, or other sources of variability. Our goal is to
find a mapping function f that minimizes the error between
f(Sk) and Yk:

f∗ = argmin
f

Ns∑
k=1

D(f(Sk), Yk), (1)

where D is some distance measure between the predicted
label and actual label. A common instantiation of this frame-
work is the traditional single instance learning paradigm
where the same label is copied to every sentence of the same
speaker and the `2-error is used to measure the difference
between the predicted label and the actual label,

f∗ = argmin
f

Ns∑
k=1

n∑
i=1

(f(xki)− Yk)2. (2)

Rather than adopting a specific hypothesis class (e.g. f is
the class of linear functions), a non-parametric class of esti-

mators based on nearest neighbors can be used [14]. An ex-
ample of this is k-nearest neighbor (KNN) regression, where
we use the training data S to make out-of-sample predictions
about a test sample, St. Traditional KNN regression for sin-
gle instance learning simply finds the K nearest neighbors of
the test sample in the training set and computes the average
of the labels,

f(St) =
1

K

∑
i∈NN(St,S)

Yi, (3)

where NN(St,S) is the set of all nearest neighbors of St in
S.

For single instance learning, these nearest neighbors can
be estimated using Euclidean distance measures; however in
our method, each data point consists of a distribution. As a
result, we propose to treat the acoustic features {xk1 , xk2 , ...,
xkn} extracted from sentences produced by speaker k as sam-
ples drawn from this unknown distribution. To that end, we
want to estimate distances between distributions rather than
individual instances. Next, we introduce three metrics for
measuring distance/divergence between two distributions.

2.1. Hausdorff distance

The Hausdorff distance measures how far two subsets of a
metric space are from each other. It directly gives the distance
between two sets of samples,

DH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)},

(4)
where d(x, y) is some distance measure between instances
with the Euclidean distance commonly used. The Hausdorf-
f distance has been used in both multiple instance learning
(MIL) and multi-instance multi-label learning for classifica-
tion [12, 15]. This measure is a simple extension of a single-
instance metric to multiple instances and not a true divergence
measure between two distributions. The next two measure-
ments directly calculate a divergence between the data distri-
butions.

2.2. Rényi-α divergence

The Rényi-α divergence is a family of divergence measures
between distributions and is defined as

Rα(p, q) =
1

α− 1
log

∫
pα(x)q1−α(x)dx, (5)

where p and q are two distributions and α can be modified to
achieve different divergences such as the Bhattacharyya dis-
tance when α = 1

2 and the Kullback-Leibler (KL) divergence
when α → 1. In [13], the authors proposed a non-parametric
estimator for the Rényi-α divergence based on density esti-
mation and applied this estimator to several machine learning
algorithms. In our example, p and q model the distributions
of the features extracted from two speakers.

5051



2.3. Dp divergence

TheDp divergence is a recently proposed divergence measure
between distributions that can be estimated directly from sam-
ples drawn from those distributions without requiring para-
metric assumptions [16]. It is defined as

Dα(p, q) =
1

4α(1−α)

[∫
(αp(x)−(1−α)q(x))2
αp(x)+(1−α)q(x) dx− (2α− 1)2

]
, (6)

where p and q are two distributions and α is the prior prob-
ability of p. This divergence is guaranteed to provide a
tighter bound on the Bayes classification error rate than B-
hattacharyya distance and has been applied to several ap-
plications related to statistical learning [17, 18, 19]. This
divergence can also be estimated non-parametrically without
estimation or plug-in of the densities p and q.

In our proposed method, we evaluate these three mea-
sures as distances between speaker distributions using a n-
earest neighbor regression rule. We predict the label of a new
unseen test speaker by using eqn. (3). For the Rényi-α diver-
gence, we set α = 0.99 to approximate the KL divergence.
For the Dp divergence we set α to 0.5.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Feature description

Before feature extraction, speech samples are first downsam-
pled to 16kHz. The extracted speech features include five
subsets: The envelope modulation spectrum [20], a represen-
tation of the slow amplitude modulations in a signal; the long-
term average spectrum features [21] and the Mel-Frequency
Cepstral Coefficients (MFCC) statistics capture atypical av-
erage spectral information in the signal; dysphonia features
capture a patients’ ability to control glottal movement; cor-
relation structure features [22, 8] capture the evolution of the
vocal tract shape and dynamics at different time scales vi-
a auto- and cross- correlation analysis of formant tracks and
MFCCs. The total number of features is 1201.

3.2. INTERSPEECH 2015 Computational Paralinguis-
tics Challenge dataset

This data set consists of speech samples from 61 Spanish-
speaking patients (30 females) with Parkinson’s disease (42
speech samples per person). There are 35 patients in the train-
ing set, 15 in the development set and 11 in the test set. Speak-
ers in the test set were recorded in a different environment
than the training and development set. As a result, the test au-
dio samples were noticeably degraded by background noise
(people talking, outside traffic noise, etc), whereas the train-
ing and development speech samples were relatively clean.
Each speaker is evaluated by clinicians based on the Unified
Parkinson’s Disease Rating Scale (UPDRS) (one label per s-
peaker). The goal of the Parkinson’s condition challenge is to

Table 1. Performance comparison with baseline system.
Baseline Hausdorff Dp Rényi KL

CV 0.270 0.444 0.266 0.499
Development 0.699 0.337 0.746 0.729

Test 0.298 0.326 0.496 0.498
Test Optimal 0.357 0.578 0.501 0.552

predict the UPDRS score directly from the speech samples.
More detailed information on the data and the challenge can
be found in [6]. Since some of the utterances were very short,
we are restricted to only the first two scales of the correlation
structure features described in [22]. Thus, for this data set, the
feature dimension is reduced from 1201 to 809. We calculate
the nearest neighbors for each test speaker using the citation
KNN rule which not only counts the closest K1-neighbors of
St but also the speakers that consider St as a top-K2-closest
neighbor [12]. The nearest neighbors are then used to esti-
mate the label of the speaker using eqn. (3). This is done us-
ing the three different distribution distance metrics described
in the previous section and we vary K1 (from 1-5) and K2

(from 0-5) to find optimal performance.
We measure the performance of the algorithm using the

Pearson correlation coefficient between the predicted UPDRS
labels and the true UPDRS labels at the speaker level. We
compare our approach (using the three different distances in
Section 2) against that of the baseline system that uses single-
instance learning based on support vector regression (SVR)
[6]. We select the parameter C for the SVR algorithm from
among {10−1, 10−2, 10−3, 10−4, 10−5} to find the optimal
performance. For the single instance implementation, we av-
erage the predicted UPDRS of all sentences produced by one
speaker and use that as the predicted UPDRS of that speaker.

In Table 1, we show the results from four evaluation
conditions: “CV: 7-fold cross-validation performance on
the training set”, “Development: performance on the de-
velopment set” and “Test: performance on the test set with
parameters set using the training and development set” and
“Test Optimal: performance on the test set with parameters
that yield the highest performance”. The table compares the
performance of the baseline system and our proposed method
using the three different distance measurements between dis-
tributions. “Hausdorff” represents Hausdorff distance, “Dp”
represents Dp divergence and “Rényi KL” represents the ap-
proximation of the KL divergence. The results show that in
all cases the nearest neighbor approach based on distribution
distances provide considerable improvement compared to the
baseline method.

3.3. ASU Dysarthric speech database

The data, collected in the Motor Speech Disorders Lab at A-
SU, consists speech samples from 56 dysarthric patients (na-
tive English speakers) with four different dysarthria subtype-
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Table 2. Comparison of Pearson correlation coefficients among five different methods.
wo PCA w PCA

clean Noise Reverb Noise+Reverb clean Noise Reverb Noise+Reverb
LR 0.563 0.357 0.243 0.037 0.782 0.596 0.488 0.153

SVR 0.728 0.500 0.477 0.012 0.759 0.600 0.453 0.243
Hausdorff 0.530 0.477 0.580 0.446 0.589 0.617 0.503 0.497

DP 0.737 0.578 0.660 0.326 0.773 0.581 0.648 0.363
Renyi KL 0.777 0.612 0.677 0.550 0.766 0.615 0.698 0.660

s: ataxic dysarthria secondary to cerebellar degeneration (n =
15), mixed flaccid-spastic dysarthria secondary to amyotroph-
ic lateral sclerosis (n = 15), hyperkinetic dysarthria secondary
to Huntington’s disease (n = 6), and hypokinetic dysarthria
secondary to Parkinson’s disease (n = 20). Speech materials
included the standard “Grandfather” paragraph and 5 rhythm
sentences [23, 24]. The “Grandfather” paragraph recordings
were segmented into individual sentences. This results in a
total of 40 sentences for each speaker. We asked 15 master’s
students from the ASU SLP program to rate the severity of
each patient based on their produced speech on a 1-7 (typical-
severely atypical) scale. To integrate ratings by multiple rater-
s, we split the 15 raters into two groups - one set is used to
train the model (7), the other set is used to test the model (8).
For each of the two groups, we use the Evaluator Weighted
Estimator (EWE) [25] to combine the multiple ratings into a
single set of ratings by calculating the mean value weighted
by individual reliability.

To evaluate the proposed algorithm, we use 5-fold cross-
validation. For each fold, 45 speakers are used for training
and the remaining 11 speakers are used for validation. Af-
ter obtaining the predicted severity ratings of all speakers,
we calculate the Pearson correlation coefficient between the
EWE rating from the test group raters and the predicted rat-
ings. We evaluate the three distance measurements and com-
pare our method with two commonly used single-instance
based methods: linear regression (LR) and SVR. For train-
ing the single-instance algorithms, each sentence is assigned
the same label (that of the speaker) and the predicted rating of
a new speaker is the average predicted rating of all sentences
produced by that speaker. We search the same parameter s-
pace as in the previous section (K1, K2 for the citation KNN
rule and the parameter C for the SVR algorithm) as in the
previous experiment.

In the second part of the experiment, we evaluate the ro-
bustness of our method to mismatched recording conditions
between the training and test data. For all experiments here,
we use clean data to train and noisy data to evaluate. We de-
sign three conditions by using 12 types of reverberation (room
impulse responses from the REVERB challenge 2014 [26] )
and 4 types of noise (babble, computer keyboard, eating chips
and ambient noise). For the first condition (“Noise” in table
2) we randomly select one type of background noise for the

“Grandfather” passage sentences and another type of noise for
the 5 rhythm sentences. The signal-to-noise ratio (SNR) is set
at 15dB. In the second condition (“Reverb” in table 2) we ran-
domly select one type of reverberation for the “Grandfather”
passage sentences and another type of reverberation for the 5
rhythm sentences. In the third condition (“Noise+Reverb” in
table 2) we randomly select one type of noise (15dB SNR)
and one type of reverberation for the “Grandfather” passage
sentences and another type of noise and another type of rever-
beration for the 5 rhythm sentences.

For all experiment conditions, we test two scenarios: one
without principal components analysis (PCA) after feature
extraction (“wo PCA” in table 2) and one with PCA to re-
duce the dimension to 100 (“w PCA” in table 2). The cross-
validation results are shown in Table 2 (the correlation coef-
ficients represent optimal performance). The table shows that
for the majority of cases our proposed distribution regression
method outperforms the single-instance methods. Though P-
CA can reduce the impact of additive noise to some extent,
distribution regression based methods are consistently more
robust to both reverberation and additive noise.

4. CONCLUSIONS

In this paper we propose a new method to tackle the prob-
lem of objective assessment of pathological speech. Instead
of single-instance learning, we treat the training data from
each speaker as samples from a distribution. A simple and
efficient lazy learning model KNN is used to make predic-
tions on out-of-sample speakers based on their distance to s-
peakers in the training set. We apply three distance measure-
ments between distributions and compare our method with
baseline single-instance based methods. Experiments on t-
wo data sets show the advantage of our method over existing
single-instance based methods, especially for the case of mis-
matched train and test conditions. While the focus of this
work was pathological speech analysis, the approach can be
applied to other computational paralinguistic tasks.
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