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ABSTRACT

Instrumental analysis of speech sometimes complements sub-
jective evaluations in speech and language therapy; however,
apart from elemental speech features such as pitch and for-
mant statistics, higher dimensional spectral features are rarely
used in practice because they are clinically uninterpretable.
While these features are likely to somehow be related to
clinical intervention, this relationship remains to be deter-
mined. This paper uses artificial recurrent neural networks to
map high-dimensional spectral features into phonological fea-
tures that are easily interpretable and provide fine-resolution
information regarding articulation quality. The evaluation
on a dysarthric speech data set shows strong correlation
between the phonological feature measures and perceptual
ratings. To increase clinical utility, we provide a new way to
visualize phonological disturbances that provides clinicians
with actionable information about intervention strategies.

Index Terms— phonological features, recurrent neural
networks, clinical applications

1. INTRODUCTION

In speech signal processing, there is no shortage of acoustic
features that can be extracted for various tasks. For example,
the mel-frequency cepstrum coefficients (MFCCs) are widely
used in automatic speech recognition [1][2]; the linear pre-
diction coefficients (LPCs) are well-studied in speech coding
[3][4]; the line spectral frequencies (LSFs) or the line spectral
pairs (LSPs) are commonly used in text-to-speech synthesis
and voice conversion [5][6]; the perceptual linear predictive
(PLP) coefficients have shown outstanding performance in
speaker identification [7][8]. Recently with the development
of deep learning, the output or the intermediate output of
artificial neural networks can also serve as acoustic features
for certain tasks [9][10][11]. However, in the clinical practice
of speech therapy, only a subset of basic lower dimensional
features are used (e.g., fundamental frequency, formant fre-
quencies, jitter and shimmer) [12][13]. Other more complex
features, including the ubiquitous MFCCs, are rarely used by
clinicians because of their lack of interpretability. However,
these high dimensional features contain a great deal of infor-
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mation about the patient and the disease. In fact, a number of
engineering studies of pathological speech analysis use these
acoustic features to automatically make predictions about
the disease state [14][15][16][17]; however, most of these
methods only provide the final prediction results to clinicians
without attempting to make explain why the decision was
made. Rather than automatically making the decision for the
clinician, we posit that it makes more sense to provide more
interpretable features that allows the clinicians to make better
decision themselves.

Phonological features [18], namely class, manner and
place of speech sounds, are more comprehensible to clinicians
than the traditional high-dimension acoustic features often
used in speech analysis applications. Chomsky and Halle
developed a phonological feature system called the ‘Sound
Pattern of English’ (SPE) [19]. In this system, each phone can
be represented by a vector of binary values that corresponds
to a comprehensive set of production features including,
sonorant, high/low (tongue position during vowel), round (lip
rounding), etc. These dimensions of production are well un-
derstood by clinicians as they are an integral part of all speech
science courses. If we can automatically evaluate the speech
based on these specific phonological categories, clinicians
will be able to infer a great deal of information about the
articulation abilities of a patient. Therefore, in this paper, we
attempt to map the difficult-to-interpret acoustic features onto
understandable phonological features and propose an estimate
of articulation quality based on these features.

A few other studies have explored the relationship be-
tween traditional acoustic features and phonological features
[20][21][22]. In [20], King and Taylor proposed to use
recurrent neural networks (RNNs) to detect phonological
features in continuous speech. In this paper, we follow their
study and use a multi-label RNN to map acoustic features to
phonological features. The difference between our study and
[20] are as follows: (1) the purpose of our study is to use
phonological features to evaluate the articulation quality of
dysarthric speakers instead of simply inferring phonological
features for healthy speech; (2) The model used in [20]
was actually a neural network with time-delayed recurrent
connections, while in this paper, we use long short-term
memory (LSTM) RNNs with multiple layers so that the
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Fig. 1. Diagram of the classification system.
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network learns longer time dependencies; (3) To estimate
the articulation quality based on these features, we train
RNNss on healthy speech and apply the model on pathological
speech so that the results reveal atypical speaker-specific
articulation patterns; (4) We propose a new visualization tool
geared to clinical applications. In the area of pathological
speech analysis, Wong et al also attempted to explore the
articulatory characteristics of dysarthric speech using similar
phonological features which they call ‘distinctive features’
[23][24]. However, the analysis in their study was based on
single words with hand labeled phonetic segmentation. In
contrast, all analyses on dysarthric data in our study are based
on continuous speech without any manual segmentation.

The organization of this paper is as follows. Section 2
introduces the implementation of the phonological feature
detection algorithm and the measure of articulation quality.
The evaluation on dysarthric speech is described in Section 3.
We make concluding remarks in Section 4.

2. PHONOLOGICAL FEATURE DETECTION AND
REPRESENTATION

2.1. Building RNNs on healthy speech

Recurrent neural networks are state-of-the-art machine learn-
ing models that have recently been used in many speech
signal processing areas, such as ASR [10], speech synthesis
[25], speech enhancement [26], speaking rate estimation
[27], accent identification [28], etc. The main advantage of
RNNs over traditional neural networks is that they can learn
long-term dependencies in multi-dimensional time-series se-
quences (e.g., features extracted periodically from speech
signal). Therefore, the prediction that the RNN makes for
a particular speech frame depends not only on the features
of the current frame but also on the features preceding and/or
following it. This is consistent with speech production, where
articulation is dependent not only on the current phoneme
being produced but also on the ones preceding and following
it (co-articulation). Therefore, in this paper we propose to
use RNN for phonological feature classification by building a
mapping from MFCCs to SPE features.

Fig. 1 shows a block diagram of the proposed system.
We use the TIMIT database to train the system by mapping
acoustic features extracted from each frame of speech to SPE
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Fig. 2. From phoneme to phonological features.

labels. After training, the model can automatically generate
the binary SPE labels for an input speech sample. We describe
the system in detail below.

The model was trained on the classic TIMIT healthy
speech database [29], which contains 630 speakers of eight
major dialects of American English and each speaker has
10 speech samples sampled at 16-bit, 16kHz with phonetic
labels. The training set contains 462 speakers (4620 samples)
and the remaining (168 speakers, 1680 samples) are in the
test set. The original SPE system contains 22 feature classes
which are believed sufficient for analyzing the phonemes of
any language. For English, only 13 feature classes are needed
and the remaining are regarded as redundant [19]. Brgndsted
expanded the 13 features into 15 and set rules to map each
TIMIT phoneme into these features [30]. Please refer to [30]
for the specific mapping between SPE features and TIMIT
phonemes. We followed his rules and transformed all the
phonemes in TIMIT using these 15 SPE features: sonorant,
syllabic, consonantal, high, back, front, low, round, tense,
anterior, coronal, voice, continuant, nasal, and strident. Fig.
2 shows an example of this transformation for the first part of
a popular TIMIT utterance.

Table 1. The classification accuracy of RNN for each
phonological feature on the TIMIT test set.

Phonological | Accuracy | Phonological | Accuracy
Feature (%) Feature (%)
sonorant 96.14 syllabic 92.09

consonantal 91.47 high 89.68

back 94.52 front 94.04
low 93.71 round 93.93
tense 97.43 anterior 92.02
coronal 90.86 voice 91.74
continuant 93.61 nasal 97.99
strident 97.52

The speech samples were analyzed using a 20ms Ham-
ming window with 10ms overlap. 13th-order MFCCs and
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Table 2. Correlation coefficients between phonological
features with perceptual ratings.
sonorant -0.30 syllabic -0.43
consonantal | -0.71 high -0.42
back 0.17 front -0.18
low 0.08 round 0.11
tense -0.16 anterior -0.69
coronal -0.67 voice -0.63
continuant | -0.59 nasal -0.10
. Linear
strident -0.69 Combination 0.79

delta and delta-delta coefficients were extracted from each
frame. All frames in a segmented phoneme were labeled
with a vector of 15 binary values, leading to a multi-label
classification problem. The architecture of the RNN is
as follows. It has an input layer with 39 nodes (input
feature dimension); three hidden layers, with 156, 256,
156 bidirectional long short-term memory (LSTM) nodes;
and an output layer with 15 softmax nodes. The training
objective was to minimize the cross entropy-error between the
distribution of the neural network output and the ground-truth.
The open source toolbox CURRENNT [31] was used to train
the network. The RNN was trained with the TIMIT training
set and evaluated on the TIMIT test set. The classification
accuracy of the model in each feature dimension on the test set
is shown in Table 1. From the table, we can see the accuracies
for all features are close to or over 90%.

2.2. Assessing the articulation abilities of dysarthric
speakers using phonological features

The RNN learns a ‘healthy’ model for each of the phonolog-
ical features. We propose to use this healthy model to assess
articulation in dysarthric speakers. Since the model is trained
on healthy speakers and we apply it to dysarthric speakers,
we can use the distance between the dysarthric speaker and
healthy speakers in the phonological feature space to assess
articulation. For example, consider a dysarthric speaker
with hypo-nasality. In this example, the nasal phonemes the
patient produces are likely to be de-nasalized. Therefore, the
number of frames detected as ‘nasal’ should be fewer than for
a healthy speaker when they speak the same content at the
same rate.

To find an articulatory distance between one dysarthric
speaker and a set of healthy speakers, we first transform the
raw phonological extracted features into a set of proportions.
Suppose the total number of frames in a speech sample
provide by speaker ¢ is N;,. Among them, N/ frames were
detected as belonging to the p** phonological feature class.

We convert all detected phonological features to percentages
P

by normalizing with the total number of frames: o,

N where

1 = 1,2,...,8, p = 1,2,...,15, and S is the number of
speakers. If we have a database of healthy speech, we can
estimate a healthy distribution for each of the phonological
feature percentages. This allows us to estimate how far
a dysarthric speaker is from the healthy distribution for a
specific feature by using the Mahalanobis distance (MD) [32]
which measures the distance between a data point (dysarthric
speaker) and a distribution (a group of healthy speakers).
Suppose the estimate of the p*" phonological feature of the

. . NP
dysarthric speaker j is e? = - its distance from the healthy
J
distribution for that feature is given by

D

where /i, and &, are the estimated mean and standard devia-
tion of healthy group’s distribution for feature p.

3. EVALUATION ON DYSARTHRIC SPEECH

3.1. Database

We evaluate the proposed system using a dysarthric speech
database collected at the Motor Speech Disorders Lab at
Arizona State University [33]. There are 33 speakers in the
dataset with dysarthria subtypes as follows: ataxic dysarthria
secondary to cerebellar degeneration (n = 11), mixed flaccid-
spastic dysarthria secondary to amyotrophic lateral sclerosis
(n = 10), hyperkinetic dysarthria secondary to Huntington’s
disease (n = 4), hypokinetic dysarthria secondary to Parkin-
son’s disease (n = 8). Along with the dysarthric speech
samples, there were another 13 healthy speakers recorded
in parallel, which means they read the same content as the
dysarthric speakers. The speech was sampled at 44.1 kHz
with 16 bit resolution. Each speaker was recorded when
reading 5 phoneme-balanced sentences. Six speech language
pathologists (SLPs) were asked to listen to these speech
samples and rate the articulatory precision for each speaker.
The rating was on a 7-point scale (1 = normal, 7 = severe
deviation from normal). The Evaluator Weighted Estimator
(EWE) was used to combine the multiple ratings into a single
one by calculating the mean value weighted by individual
reliability [34]. The details of the speech database can be
found in [33].

3.2. Correlation analysis

In our experiment, the speech was first down sampled to
16kHz and segmented into frames. Features were extracted
as described in Section 2.1. The RNN trained on TIMIT was
applied to the acoustic features from dysarthric speakers. For
every speech segment, the model provided a 15-dimensional
binary output that predicts which of the phonological feature
classes the frame belongs to. The ones in the binary sequence
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Fig. 3. Visualization of phonological features in a spider plot.

indicate that the model has detected a target feature, while
zeros indicate that the feature was not detected for that
particular frame.

For each speaker, we concatenated the results of five
sentences together and calculated the proportion of detected
frames in the sequence for each phonological category and
calculated its MD to the healthy group per Eqn. 1. The
Pearson correlation between the estimated distances with
the EWE subjective rating was calculated. The result is
shown in Table 2. The features with absolute correlation
coefficient values higher than 0.4 are highlighted in the table.
From the table, we can see that some of the features such
as consonantal, anterior, coronal, voice, and strident, have
strong correlation ([0.60,0.79]) with the perceptual rating;
others such as syllabic, high, and continuant have moderate
correlations ([0.40,0.59]) with the perceptual rating. A
linear regression on the highlighted phonological features was
conducted to predict the perceptual rating. The leave-one-out
cross validation results are shown as the last item of Table 2,
and it shows a strong correlation.

3.3. Visualization for clinical applications

A key feature for the phonological features we propose is
interpretability. To that end, we propose a new visualization
tool based on the spider plot to integrate all phonological
features into a single representation (see Fig. 3) Since the
first three features (sonorant, syllabic and consonantal) are
a collection of all other features, we did not show them in
this plot. The average value of the estimated phonological
features from healthy group was scaled to one, corresponding
to the unit circle (dark green lines) in the figure. The standard
deviation for each feature is shown as light green lines. The
values of the evaluated dysarthric speaker, normalized by the

average of healthy speakers (%) is shown as the blue lines
in the figure. For each phonological group, the closer the
speaker is to the unit circle, the more precise his or her ability
to produce sounds from that category. This representation
provides clinicians with an informative impression of the
articulation abilities of the speaker. For example, in Fig.

3, we show three dysarthric speakers with different profiles.
We can see from the plot that Speaker 1 produced more
round and back vowels while fewer high and front vowels
than healthy speakers; furthermore, the speaker produced
fewer clear consonant. Speaker 2 seems to have less severe
articulation problem than the other two since the figure shows
little deviation from the healthy distribution. Speaker 3 shows
imprecise vowel and consonant production; however with
a different distribution than speaker 1. This representation
provides actionable information to clinicians that seek to
improve various aspects of articulation through intervention.

4. CONCLUSIONS

High dimensional acoustic features are usually hard to in-
terpret in clinical practice. Phonological features, namely
class, manner and place of speech sounds make more sense
to clinicians. This paper has proposed to use the LSTM RNN
to map acoustic features to SPE binary phonological features.
The model was trained on healthy speech and applied on
dysarthric speech so that the results could reveal the specific
pathological articulation patterns of a speaker. The model
compares the articulatory abilities of a speaker against a group
of healthy controls using a fixed read passage. Evaluation
on a dysarthric speech database revealed that most of the
articulatory features are moderately or strongly correlated
with perceptual impressions of articulatory precision. To
make the result more interpretable, a spider plot has been
developed for visualization. From the plot, clinicians can
gain valuable information regarding the articulation abilities
of a speaker, which can be helpful for developing personal
treatment plans and monitoring disease progress.
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