
EXTENDED LOW-RANK PLUS DIAGONAL ADAPTATION
FOR DEEP AND RECURRENT NEURAL NETWORKS

Yong Zhao, Jinyu Li, Kshitiz Kumar, and Yifan Gong

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA
{yonzhao; jinyli; kskumar; ygong}@microsoft.com

ABSTRACT

Recently, the low-rank plus diagonal (LRPD) adaptation was pro-
posed for speaker adaptation of deep neural network (DNN) mod-
els. The LRPD restructures the adaptation matrix as a superposi-
tion of a diagonal matrix and a product of two low-rank matrices.
In this paper, we extend the LRPD adaptation into the subspace-
based approach to further reduce the speaker-dependent (SD) foot-
print. We apply the extended LRPD (eLRPD) adaptation for the
DNN and LSTM models with emphasis placed on the applicabil-
ity of the adaptation to large-scale speech recognition systems. To
speed up the adaptation in test time, we propose the bottleneck (BN)
caching approach to eliminate the redundant computations during
multiple sweeps of development data. Experimental results on the
short message dictation (SMD) task show that the eLRPD adapta-
tion can reduce the SD footprints by 82% for the SVD DNN and
96% for the LSTM-RNN over the linear adaptation, while maintain-
ing the comparable accuracy. The BN caching achieves up to 3.5
times speedup in adaptation at no loss of recognition accuracy.
Index Terms: deep neural network, recurrent neural network, long
short-term memory, speaker adaptation

1. INTRODUCTION

The application of deep neural networks (DNNs) has achieved
tremendous success for large vocabulary continuous speech recog-
nition (LVCSR) [1, 2, 3, 4]. As an alternative to DNNs, recurrent
neural networks (RNNs) have also been studied extensively for the
task of acoustic modeling [5]. RNNs are characterized by recur-
rent connections on the hidden layers which allow modelling of
long-range temporal context for improved sequence labelling. More
recently, long short-term memory (LSTM) RNNs have been shown
to outperform DNNs in speech recognition [6, 7, 8].

Despite their outstanding performance, both DNNs and LSTMs
may still suffer from the accuracy degradation due to the potential
acoustic mismatch between the training and test conditions. To miti-
gate this mismatch, various methods for speaker adaptation of neural
networks (NNs) have been proposed. These methods can be classi-
fied into three categories [9]. First, the speaker-independent (SI)
model, or certain layers of the model, is directly updated [10, 11, 12].
To avoid overfitting, conservative training such as Kullback-Leibler
divergence (KLD) regularization [11] is proposed.

The second category of approaches inserts speaker-dependent
(SD) linear transformation layer on top of certain layers in the
generic model. The layer being adapted can be either input features,
hidden layers, or the input to the softmax layer [13, 14, 15, 16,
17, 18]. The transformation-based methods may still suffer from
overfitting, if the dimension of the adapted layer is high and the
transformation matrix is in a full-rank form. In [19, 20], the original
large full-size DNN model is converted to a much smaller low-rank
DNN model by using singular value decomposition (SVD). Then,
SVD bottleneck adaptation is done by applying the linear transform
to the bottleneck layer. Thus, only matrices of much lower dimen-
sion are updated for each speaker. Many low-footprint adaptation

techniques have been proposed to constrain the transforms to be
structured, such as block-diagonal [15], diagonal [17, 21, 22], and
bias only [23]. In [24], we proposed the low-rank plus diagonal
(LRPD) adaptation, which restructures the transformation matrix as
a superposition of a diagonal matrix and a product of two low-rank
matrices. By varying the rank of the transformation, the LRPD con-
tains the full and the diagonal transformation matrices as its special
cases.

In the third category, the subspace methods aim to find a low
dimensional subspace of the transformations, so that each transfor-
mation can be specified by a small number of parameters. One pop-
ular method in this category is the use of auxiliary features, such as
i-vector [25, 26] and speaker code [23], which are concatenated with
the standard acoustic features. It can be shown that the augmenta-
tion of auxiliary features is equivalent to confining the adapted bias
vectors into a speaker subspace [9]. Other subspace methods in-
clude tensor-based adaptation [27], cluster adaptive training (CAT)
[28, 29], factorized hidden layer (FHL) [30, 31], where the trans-
formations are confined into the speaker subspace. The subspace
methods introduce the connection layers to link the speaker repre-
sentation parameters with the generic SI model. The connection lay-
ers can be linear, nonlinear, or a stack of multiple layers [32]. All
the parameters (SI model, connection layers, and speaker represen-
tations) can be adaptively learned from the training data along with
speaker labels.

Despite extensive research made, there remain outstanding chal-
lenges to real-world deployment of the adaptation algorithms. This
paper presents out recent progress in speaker adaptation towards the
cloud-based speech recognition systems. We first extend the LRPD
adaptation into the subspace-based approach to further reduce the
SD footprint, inspired by the FHL approach [30]. The extended
LRPD (eLRPD) is learned in a lightly adaptive training manner by
keeping the original SI model fixed. We then apply the eLRPD
adaptation for the DNN and LSTM models and examine how var-
ious setups affect the recognition accuracy given a very powerful
SI model. To speed up the adaptation in test time, we propose the
bottleneck (BN) caching approach to eliminate the redundant com-
putations on the model portion below the layer being adapted during
multiple sweeps of development data. The proposed methods are
evaluated on a short message dictation (SMD) task.

2. LOW-RANK PLUS DIAGONAL (LRPD) ADAPTATION

One popular approach for adapting DNNs is applying a linear trans-
formation to a certain layer to account for the mismatch between the
training and test conditions. One main issue with these adaptation
techniques is that they have a large number of SD parameters per
speaker due to the high dimensionality of the DNN layers.

We have recently presented the LRPD adaptation for DNNs in
[24] to flexibly control the number of adaptation parameters accord-
ing to the available adaptation data while maintaining the recognition
accuracy. The algorithm is motivated by observing that the speaker-
specific transformation matrix W s is very close to an identity ma-

5040978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

(a) LRPD adaptation

(b) Extended LRPD adaptation

Fig. 1: Illustration of the network structures of the LRPD and ex-
tended LRPD adaptation methods. Shaded nodes denote nonlinear
units, unshaded nodes for linear units. Red dashed links correspond
to the SD parameters.

trix, because the adapted model should not deviate too far from the
SI model given the limited number of adaptation data.

Given a k × k adaptation matrix W s, we approximate it as a
superposition of a diagonal matrix Ds and a product of two smaller
low-rank matrices P s and Qs, respectively

W s,k×k ≈Ds,k×k + P s,k×cQs,c×k. (1)

The number of elements in the LRPD decomposition is k(2c + 1),
whereas the original W s has k2 elements. If c � k , this can
significantly reduce the adaptation model footprint. We can see that
the LRPD adaptation amounts to inserting two linear layers above
the layer being adapted, as shown in Fig. 1a.

The LRPD contains the full and the diagonal adaptation ma-
trices as its special cases. When c = 0, the LRPD is reduced to
adaptation with diagonal matrix. Specifically, if we apply the diago-
nal transforms before or after all non-linear layers, we may achieve
the sigmoid [22] or learning hidden unit contribution (LHUC) [21]
adaptation. Moreover, the LRPD adaptation can not only be applied
to adapt a full-size DNN, but also be applied to the bottleneck layer
of a SVD DNN, leading to a combination of the SVD bottleneck
adaptation [20] and LRPD adaptation.

2.1. Extended LRPD (eLRPD) adaptation

One issue with the LRPD adaptation is that the number of free pa-
rameters is proportional to the dimension of the layer being adapted.
When the layer dimension is high, we have to greatly reduce the rank
c to control the size of the SD footprint. In [24], we observed that
applying the LRPD above a small-sized bottleneck layer of the SVD
DNN performs better than above a layer of the full-sized DNN.

To mitigate this problem, we extend the LRPD adaptation into
the subspace-based approach, inspired by the factorized hidden layer
(FHL) approach for adapting the DNN models [30]. Specifically, we
insert another full matrix T s with the size of c× c between the two
low-rank matrices as follows:

W s,k×k ≈Ds,k×k + P k×cT s,c×cQc×k (2)

where P and Q are redefined as matrices independent of speakers
and dedicated to connect the SD parameters T s with the generic SI

Fig. 2: A memory block of LSTM.

model. It can be shown that by (2), the transformation matrices with
Ds deducted are constrained to lie in a subspace spanned by a set of
rank-one matrices.

The number of SD elements in the eLRPD is c2 + k, compared
with k(2c+ 1) in the conventional LRPD. This makes the SD foot-
print under less influence from the dimensionality of the layer being
adapted. The eLRPD is equivalent to inserting three linear layers
above the layer being adapted, as shown in Fig. 1b.

2.2. Lightly adaptive training

We need to adaptively learn the connection weight matrices P and Q
from the training data, and Ds and T s for both the training and test
speakers. During adaptive training, the generic SI model combined
with P and Q forms the canonical model. Typically, the update of
the canonical model and the speaker representations are interleaved
over all training data.

However, from the practice perspective, this training scheme has
problems. First, the generic SI model after being updated, when us-
ing alone, is not guaranteed to produce the best recognition perfor-
mance against the test utterances. Thus, it may require that the origi-
nal SI model be also kept for the first pass decoding. Second, during
adaptive training, the algorithm has to frequently switch between SD
parameters according to the speaker identities of the training utter-
ances. This poses a great challenge to the underlying deep learning
algorithm, which is implemented based on the massive paralleliza-
tion power of the Graphical processing units (GPUs).

To address this issue, we adopt a lightly adaptive training ap-
proach to only adaptively learn P and Q, while keeping the original
SI model fixed. Furthermore, since P , Q, Ds, and T s are small in
size, we select a small portion of the training data for adaptive train-
ing. In test time, we use the SI model to generate the hypothesis for
unsupervised adaptation. The SD parameters are then estimated.

3. ADAPTATION OF LSTM-RNN MODELS

Fig. 2 depicts the conventional LSTM that has been most commonly
used in the literature. An LSTM layer is composed of multiple mem-
ory blocks. Each memory block consists of self-connected mem-
ory cells ct and three multiplicative gate units (input it, output ot,
and forget f t) to control the flow of information. Furthermore, the
LSTM is enriched with peephole connections that link the mem-
ory cells to the gates. The LSTM outputs ht are recurrently fed
as the inputs. Given the input sequence xt, an LSTM layer com-
putes the gates and memory cells activations to generate the outputs
ht sequentially. Moreover, [7] proposed that a projection matrix can
be used to transform the outputs to a low dimension. Deep LSTM
RNNs are formed by stacking multiple LSTM layers. More details
of the LSTM-RNN formulation can be found in [33].

5041

Both DNN and LSTM are special cases of the NNs and so many
generic adaptation techniques developed for DNNs can be applied to
LSTMs directly. However, the LSTM is more complicated and con-
tains many components. Furthermore, it is uncertain if the recurrent
loop has sufficiently exploited the long-range speaker characteristics
and left less room for further improvement due to speaker adapta-
tion.

In [12], we have conducted an extensive study of speaker adap-
tation for LSTM models. Two adaptation approaches were studied:
updating existing LSTM components and inserting linear transfor-
mation above the LSTM output layers. In this paper, we further
present applying the LRPD adaptation for the LSTM models and
examine how various setups affect the recognition accuracy given a
more powerful LSTM model.

Intuitively, we should insert the transformation matrix at the
points where the flows of information afflux. We choose two points
to implement this idea. First, we apply a linear transform above the
output of the LSTM layers. This is equivalent to transforming the
input to the next LSTM layer. Alternatively, we apply a linear trans-
form above the concatenation of ht−1 and xt, noting that both ht−1

and xt are fed together to the gates and memory cells of the LSTM
layer.

4. ACCELERATING ADAPTATION IN TEST TIME

Learning efficiency is a critical challenge to real-world deployment
of the adaptation algorithms. First, a cloud-based speech recognition
system may serve millions of users. Updating the adaptation mod-
els of all users may last a few months using a single GPU. Second,
if the speech recognizers are embedded in client sides, the adapta-
tion will be constrained by the computational capacity of the client
devices, where GPUs may not be available. Furthermore, it is also
desirable to design an adaptation algorithm that is twofold fast, i.e.,
learning in a short time given a small amount of development data.
It would open up the opportunity for online and incremental adap-
tation, where the speakers and environmental conditions change dy-
namically.

The gradient-based backpropagation (BP) algorithm is time con-
suming and performed serially over many iterations of the training
data. The standard way of multiplying an m×n matrix by an n× p
matrix has complexity of O(mnp). Thus, it can be shown that the
computational complexity of either forward or backward propaga-
tion per minibatch is O(Nd), where N is the total number of model
parameters and d is the minibatch size. The time for the model up-
date step is negligible as it is performed once per minibatch.

For adaptation, we may need an extra forward pass for the KLD
regularization to compute the output from the reference SI model.
We usually run BP in multiple (10-20) sweeps through the devel-
opment data. Thus, the computational complexity of the learning is
O(3NFh), where F is the size of the development data and h is the
number of sweeps.

To reduce the computational cost, we notice that only weights in
the adaptation layer are updated and the outputs from the layer being
adapted, say l, do not change along the evolution of the adaptation
model. Thus, we can eliminate the redundant computations on those
layers below layer l during multiple sweeps by caching the outputs
from layer l, once they are computed. The storage used for caching
is affordable, since usually the number of adaptation utterances is
less than hundreds and the dimension of the layer being adapted is
less than thousands. This method is referred to as the bottleneck
(BN) caching, though we can apply it on layers other than BN. The
algorithm is summarized as follows:

1. Split the SI model into two sub-models along the lowest adap-
tation layer.

2. Dump the BN output of the lower sub-model over all the de-
velopment data.

3. Perform adaptation on the upper sub-model using the BN fea-
tures as input.

The computational complexity is reduced to O((Nlo+3Nuph)F),
where Nlo and Nup are the sizes of the lower and upper sub-models,
respectively. If the adaptation layer is inserted just above the last
nonlinear hidden layer, the optimization problem is casted as logistic
regression, whose objective function is convex. This helps to make
the optimization more efficient and reduce the number of training
iterations, particularly with 2-nd order optimization techniques.

5. EXPERIMENTS AND RESULTS

The proposed methods are evaluated on a Microsoft internal Win-
dows Phone short message dictation (SMD) task using DNN and
LSTM models, respectively. The SMD data set consists of 7 speak-
ers, giving a total number of 20,203 words. A separate development
set of 200 sentences per speaker is used for model adaptation.

5.1. Adaptation of DNNs

We first report experiments using the SVD-based DNN acoustic
models. The baseline DNN model is trained with 300hr voice
search (VS) and SMD data. The SI GMM-HMM acoustic model
has approximately 288K Gaussian components and 5976 senones
trained with the MLE procedure, followed by fMPE and BMMI. The
baseline SI CD-DNN-HMM system takes as input a 22-dimension
mean-normalized log-filter bank feature with up to second-order
derivatives and a context window of 11 frames, forming a vector
of 726-dimension (66 × 11) input. On top of the input layer there
are 5 hidden layers with 2048 units for each. The output layer has
a dimension of 5976. We convert the full-size DNN model to the
SVD DNN model by doing SVD on all the matrices except the one
between the input and the first hidden layer, and keep 40% of total
singular values. The numbers of units on the linear layers after
SVD are 256, 272, 224, 256, and 368, from bottom to top. We
then retrained the SVD model and obtained comparable accuracy
to the full-size model. The baseline SI SVD DNN systems achieve
21.43% WER on the 7-speaker test set. More details of SVD-based
DNN model training can be found in [19]. This DNN system is
the same as the one used in [24], where the LRPD is conducted for
supervised adaptation. In this work, we move forward and evalu-
ate the performance of the eLRPD adaptation for both supervised
and unsupervised adaptation. The Computational Network Toolkit
(CNTK) [34] is used for neural network training.

Table 1: Footprints and WERs (in %) for the linear, LRPD, and
eLRPD adaptations applied above the third BN layer of the SVD
DNN.

Model # SD Params. Super. Unsup.
Linear 50.4K 17.07 18.75
LRPD, c=5 2.6K 17.92 19.36
LRPD, c=10 4.8K 17.73 19.16
LRPD, c=20 9.2K 17.37 18.92
eLRPD, c=30 1.1K 18.25 19.43
eLRPD, c=50 2.7K 17.74 19.12
eLRPD, c=100 10.0K 17.19 18.82

5042

The adaptation is applied above the third BN layer with 224 units
of the SVD DNN, as it is shown in [35] that adapting intermediate
layer provides more benefits than adapting boundary layers. Natu-
rally, applying a full transformation upon the BN layer of SVD DNN
model leads to the SVD BN adaptation [20]. We will see whether the
eLRPD adaptation can further reduce and improve over an already
very compact SVD BN adaptation. The KLD regularization [11] is
applied, where the regularization weight is empirically set to 0.1 and
0.2 in supervised and unsupervised setups, respectively.

Table 1 compares the speaker-specific footprints and WERs for
the linear, LRPD, and eLRPD adaptation of different configurations.
It is observed that the linear adaptation produces the best WER of
17.07% for supervised and 18.75% for unsupervised setups, respec-
tively. This translates to 20.3% and 12.5% relative improvement over
the baseline SI model. Compared with the linear adaptation, the eL-
RPD (c = 100) reduces the SD parameters by 80% with only a small
degradation in accuracy (less than 1% relative). It also performs
slightly better than the LRPD (c = 20) in accuracy, both having
the comparable footprints. When we reduce the model sizes further,
both the methods begin to degrade in performance. Meanwhile, the
eLRPD exhibits better compression effectiveness. Specifically, the
eLRPD (c = 50) achieves the similar performance to the LRPD
(c = 10), while saving the footprint by 44%.

Table 2: Learning time used during adaptation using the BN
caching. # Params. denotes the footprint of the upper sub-model
in the BN caching.

Params. GPU CPU
No caching 8.2M 18s 372s
Caching 3-rd BN layer 4.3M 9s 199s
Caching 5-th BN layer 2.2M 5s 106s

In the second experiment, we investigate how the BN caching
affects the adaptation speed of the DNN models. Table 2 summa-
rizes the learning time by inserting a linear layer above the 3-rd and
5-th BN layers. The training sweeps 10 passes of 50 utterances. The
training is carried out on a Dell Precision T3600 workstation of 16
cores and a single NVIDIA Tesla K20X GPU, respectively. We have
observed that the BN caching reduces the learning time by half on
the 3-rd BN layer using the GPU and CPUs in out setups. The sav-
ings in time are almost proportional to the savings in the upper sub-
model size during the BP training. In the extreme case, if we adapt
the last BN layer (5-th), the BN caching may speed up the learning
by about a factor of 3.5.

5.2. Adaptation of LSTM-RNNs
We further evaluate the speaker adaptation on the same SMD task us-
ing a more powerful LSTM-RNN model. The training data consist of
2600hr live US English data. The SI LSTM acoustic model is formed
by stacking 4 LSTM layers which are followed by the softmax layer
[7]. Each LSTM layer has 1024 memory cells and the output size of
each LSTM layer is reduced to 512 by linear projection. The acous-
tic feature is the 80-dimensional static log filter-bank (LFB). The
softmax layer has a dimension of 5980. The LSTM-RNN is trained
to minimize the frame-level cross-entropy criterion using the trun-
cated back propagation through time (BPTT) algorithm (back to 20
frames). There is no frame stacking, and the output HMM state label
is delayed by 5 frames. When training LSTM, the backpropagation
through time (BPTT) step is 20. A trigram LM is used for decod-
ing with around 8M n-grams. The baseline LSTM model achieves
14.75% WER on the SMD task, which is significantly better than

the DNN used in the previous experiments. Many factors contribute
to this gain including the superiority in topology of the LSTM-RNN
over the DNN, the involvement of much more training data, and the
use of a more powerful LM.

Table 3: Footprints and WERs (in %) for the linear, LRPD, and
eLRPD adaptations applied on the LSTM model.

Layer # SD
adapted Model Params. Super. Unsup.

x4
t Linear 256K 13.65 14.29

{x4
t , h

4
t−1} 1.0M 13.71 14.16

h4
t 256K 13.59 14.27

h4
t LRPD, c=10 11.0K 13.87 14.18

LRPD, c=20 21.0K 13.74 14.06
h4
t eLRPD, c=50 2.9K 13.89 14.23

eLRPD, c=100 10.3K 13.62 14.12

Table 3 compares the results of various adaptation setups for
adapting LSTM-RNN. First, we investigate the effects of inserting
linear transformations at different positions of the last LSTM layer.
Other LSTM layers are not reported, as it is shown in [12], adapt-
ing top hidden layers for the LSTM-RNN model is more effective
than adapting lower layers. Three positions are probed, x4

t , h4
t ,

and a concatenation of {x4
t , h

4
t−1}. All these configurations pro-

duce the similar performance, around 8% relative improvement for
supervised setup and around 4% for unsupervised setup over the
baseline LSTM-RNN. The gain we achieve here becomes smaller
than the gain using the DNN model. We conjecture that the re-
current topology of the LSTM-RNN make it more effective to cap-
ture and normalize long-range speaker characteristics than the DNN.
Moreover, the LSTM-RNN learns richer speaker variations through
a large amount of training data and thus generalizes better to unseen
speakers. The gain reported here is also small compared with that
reported in [12]. This is because we established a much stronger SI
LSTM baseline than the one in [12] by using more training data and
more complicated training strategies.

We next apply the different adaptation methods at the output of
the last hidden layer h4

t , since we can greatly speed up the learning
by caching h4

t . It is observed that the LRPD and eLRPD adaptation
for LSTM-RNNs has a similar trend to those for the DNN. Specifi-
cally, the eLRPD (c = 100) reduces the SD footprint by 96% over
the linear adaptation without loss of accuracy. It also exhibits better
compression effectiveness than the LRPD adaptation.

6. CONCLUSION

In this paper, we have extended the previously proposed LRPD
adaptation into the subspace-based approach to further reduce the
speaker-specific footprint. The LRPD restructures the adaptation
matrix as a superposition of a diagonal matrix and a product of two
low-rank matrices. The eLRPD adaptation inserts another SD ma-
trix between the two low-rank matrices. To speed up the adaptation
in test time, we proposed the BN caching approach to eliminate
the redundant computations during multiple sweeps of development
data. Experimental results on the SMD task showed that the eLRPD
adaptation can reduce the SD footprint by 82% for the SVD DNN
and 96% for the LSTM-RNN compared with the linear adaptation,
while maintaining the comparable accuracy. Meanwhile, the BN
caching can achieve up to 3.5 times speedup for adaptation at no
loss of recognition accuracy.

5043

7. REFERENCES

[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30–42,
2012.

[2] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Application of pre-
trained deep neural networks to large vocabulary speech recognition,”
in Proc. Interspeech, 2012, pp. 2578–2581.

[3] L. Deng, J. Li, J.-T. Huang, et al., “Recent advances in deep learning for
speech research at Microsoft,” in Proc. ICASSP, 2013, pp. 8604–8608.

[4] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and
A. Mohamed, “Making deep belief networks effective for large vocab-
ulary continuous speech recognition,” in Proc. Workshop on Automatic
Speech Recognition and Understanding, 2011, pp. 30–35.

[5] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. ICASSP, 2013, pp. 6645–6649.

[6] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech recognition
with deep bidirectional LSTM,” in Proc. Workshop on Automatic
Speech Recognition and Understanding, 2013, pp. 273–278.

[7] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling,” in
Proc. Interspeech, 2014.

[8] Y. Miao, J. Li, Y. Wang, S.-X. Zhang, and Y. Gong, “Simplifying long
short-term memory acoustic models for fast training and decoding,” in
Proc. ICASSP, 2016, pp. 2284–2288.

[9] D. Yu and L. Deng, “Adaptation of deep neural networks,” in Automatic
speech recognition: a deep learning approach, pp. 193–215. Springer,
2015.

[10] H. Liao, “Speaker adaptation of context dependent deep neural net-
works,” in Proc. ICASSP, May 2013, pp. 7947–7951.

[11] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence regularized
deep neural network adaptation for improved large vocabulary speech
recognition,” in Proc. ICASSP, 2013, pp. 7893–7897.

[12] C. Liu, Y. Wang, K. Kumar, and Y. Gong, “Investigations on speaker
adaptation of LSTM RNN models for speech recognition,” in Proc.
ICASSP, 2016.

[13] J. Neto, L. Almeida, M. Hochberg, C. Martins, L. Nunes, S. Renals,
and T. Robinson, “Speaker-adaptation for hybrid HMM-ANN con-
tinuous speech recognition system,” in Proc. Eurospeech, 1995, pp.
2171–2174.

[14] B. Li and K. C. Sim, “Comparison of discriminative input and out-
put transformations for speaker adaptation in the hybrid NN/HMM sys-
tems,” in Proc. Interspeech, 2010, pp. 526–529.

[15] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-
dependent deep neural networks for conversational speech transcrip-
tion,” in Proc. Workshop on Automatic Speech Recognition and Under-
standing, 2011, pp. 24–29.

[16] R. Gemello, F. Mana, S. Scanzio, P. Laface, and R. De Mori, “Linear
hidden transformations for adaptation of hybrid ANN/HMM models,”
Speech Commun., vol. 49, no. 10, pp. 827–835, 2007.

[17] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, “Adaptation of
context-dependent deep neural networks for automatic speech recogni-
tion,” in Proc. Workshop on Spoken Language Technology, 2012, pp.
366–369.

[18] Y. Miao and F. Metze, “On speaker adaptation of long short-term mem-
ory recurrent neural networks,” in Proc. Interspeech, 2015.

[19] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition,” in Proc. Inter-
speech, 2013, pp. 2365–2369.

[20] J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, “Singular value decom-
position based low-footprint speaker adaptation and personalization for
deep neural network,” in Proc. ICASSP, 2014, pp. 6409–6413.

[21] P. Swietojanski and S. Renals, “Learning hidden unit contributions for
unsupervised speaker adaptation of neural network acoustic models,”
in Proc. IEEE Spoken Language Technology Workshop, 2014, pp. 171–
176.

[22] Y. Zhao, J. Li, J. Xue, and Y. Gong, “Investigating online low-
footprint speaker adaptation using generalized linear regression and
click-through data,” in Proc. ICASSP, 2015, pp. 4310–4314.

[23] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of hybrid
NN/HMM model for speech recognition based on discriminative learn-
ing of speaker code,” in Proc. ICASSP, 2013, pp. 7942–7946.

[24] Y. Zhao, J. Li, and Y. Gong, “Low-rank plus diagonal adaptation for
deep neural networks,” in Proc. ICASSP, 2016.

[25] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation
of neural network acoustic models using i-vectors,” in Proc. Workshop
on Automatic Speech Recognition and Understanding, 2013, pp. 55–59.

[26] A. Senior and I. Lopez-Moreno, “Improving DNN speaker indepen-
dence with i-vector inputs,” in Proc. ICASSP, 2014, pp. 225–229.

[27] D. Yu, X. Chen, and L. Deng, “Factorized deep neural networks for
adaptive speech recognition,” in International workshop on statistical
machine learning for speech processing, 2012.

[28] T. Tan, Y. Qian, M. Yin, Y. Zhuang, and K. Yu, “Cluster adaptive
training for deep neural network,” in Proc. ICASSP. IEEE, 2015, pp.
4325–4329.

[29] C. Wu and M. J. F. Gales, “Multi-basis adaptive neural network for
rapid adaptation in speech recognition,” in Proc. ICASSP. IEEE, 2015,
pp. 4315–4319.

[30] L. Samarakoon and K. C. Sim, “Factorized hidden layer adaptation
for deep neural network based acoustic modeling,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 24, no. 12, pp. 2241–2250, Dec. 2016.

[31] J. Li, J.-T. Huang, and Y. Gong, “Factorized adaptation for deep neural
network,” in Proc. ICASSP, 2014, pp. 5574–5578.

[32] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu, “Fast adap-
tation of deep neural network based on discriminant codes for speech
recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol. 22, no.
12, pp. 1713–1725, 2014.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, pp. 1735–1780, 1997.

[34] A. Agarwal, E. Akchurin, C. Basoglu, et al., “An introduction to com-
putational networks and the computational network toolkit,” Tech. Rep.
MSR-TR-2014-112, Microsoft, 2014.

[35] K. Kumar, C. Liu, K. Yao, and Y. Gong, “Intermediate-layer DNN
adaptation for offline and session-based iterative speaker adaptation,”
in Proc. Interspeech, 2015, pp. 1091–1095.

5044

