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ABSTRACT

Subspace methods are used for deep neural network (DNN)-
based acoustic model adaptation. These methods first construct a
subspace and then perform the speaker adaptation as a point in the
subspace. This paper aims to investigate the effectiveness of sub-
space methods for robust unsupervised adaptation. For the analysis,
we compare two state-of-the-art subspace methods, namely, the sin-
gular value decomposition (SVD)-based bottleneck adaptation and
the factorized hidden layer (FHL) adaptation. Both of these meth-
ods perform speaker adaptation as a linear combination of rank-1
bases. The main difference between the subspace construction is
that FHL adaptation constructs a speaker subspace separate from the
phoneme classification space while SVD-based bottleneck adapta-
tion shares the same subspace for both the phoneme classification
and the speaker adaptation. So far, no direct comparisons between
these two methods are reported. In this work, we compare these two
methods for their robustness to unsupervised adaptation on Aurora
4, AMI IHM and AMI SDM tasks. Our findings show that the FHL
adaptation outperforms the SVD-based bottleneck adaptation espe-
cially in challenging conditions where the adaptation data is limited,
or the quality of the adaptation alignments are low.
Index Terms: Automatic Speech Recognition, DNN Adaptation.
Subspace Methods.

1. INTRODUCTION

Deep neural network (DNN)-based acoustic modeling has signif-
icantly outperformed the conventional Gaussian mixture model
(GMM)-based automatic speech recognition (ASR) systems. How-
ever, DNNs are still susceptible to performance degradations due to
the mismatches between the training and testing conditions. Adap-
tation techniques reduce the mismatch by changing a well-trained
model to match the testing conditions or by transforming the runtime
features to match the model.

It is possible to broadly categorize DNN adaptation techniques
into two classes: test-only adaptation (simply refers to as adapta-
tion), and adaptive training. The adaptation methods start from a
well-trained DNN model and use data from the testing condition to
reduce the mismatch. The adaptive training uses both training and
testing data to reduce the mismatch. Some adaptation methods use
a condition dependent linear layer to augment a well-trained DNN
model [1–6]. There are subspace or subset methods where the adap-
tation is performed to a subset of model parameters or on a pruned
model [7–14]. Regularization based adaptation helps to perform the
adaptation more conservatively [15, 16]. Recently developed clus-
ter adaptive training (CAT) for DNNs [17,18], feature normalization
techniques like constrained maximum likelihood linear regression

(CMLLR) [19], vocal tract length normalization (VTLN) [20], and
speaker-aware training (SaT) [21–23] can be considered as adaptive
training methods.

A good adaptation technique should be able to perform adapta-
tion in an unsupervised fashion, which is more realistic. In addition,
the method should prevent over-fitting to adaptation data, especially
when the adaptation data is limited. Furthermore, it is desirable to
have a small number of speaker-dependent (SD) parameters (per-
speaker footprint) to reduce deployment costs. Subspace methods
are proposed to meet these requirements. In this paper, we investi-
gate the singular value decomposition (SVD)-based bottleneck adap-
tation [9, 10, 24] and the recently proposed factorized hidden layer
(FHL) adaptation [25] on their robustness to unsupervised adap-
tation. We also compare their per-speaker footprint requirements.
The evaluations are reported in three benchmark ASR tasks: Au-
rora 4 [26, 27], Augmented Multi-party Interaction (AMI) [28, 29]
individual headset microphone (IHM) and AMI single distance mi-
crophone (SDM).

The rest of the paper is organized as follows. Section 2 briefly
describes the methods being investigated. In Section 3, we give the
details of our experimental setup. The results are reported in Section
4 and we conclude the paper in Section 5.

2. METHODS

In this section, we review the SVD-based adaptation and the FHL
adaptation. At the end of this section, we highlight the key differ-
ences between the two methods.

2.1. SVD-Based Adaptation

A DNN can be viewed as a model that learns a feature representa-
tion as well as a classifier. Each hidden layer learns a more abstract
representation (hl) from the lower layer’s representation (hl−1):

hl = σ(Wlhl−1 + bl) (1)

where Wl is the weight matrix, bl is the bias vector and σ is the
sigmoid activation function.

2.1.1. Training

In SVD-based adaptation [9, 10, 24] a well-trained DNN model is
restructured to approximate Wl with two low-rank matrices using
SVD as given in Equation 2:

Wl ≈ AlCl> (2)
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where Wl ∈ Rm×n, Al ∈ Rm×k, Cl ∈ Rk×n and k is the number
of retained singular values (k � min(m,n)). Then, the DNN is
retrained to recover from the loss of accuracy.

2.1.2. Adaptation

During the adaptation step, an SD linear transform is estimated be-
tween Al and Cl> as given below:

Wl
s ≈ AlKl

sC
l> (3)

where Wl
s is the SD transformation matrix and Kl

s ∈ Rk×k is the
adaptation matrix. Before the adaptation Kl

s is intialized with the
identity matrix. It is possible to perform the adaptation in two ways:
namely, SVD full or SVD diagonal. In SVD full adaptation, Kl

s is a
full matrix and can be formulated as a linear interpolation of rank-1
bases as below:

Wl
s ≈

k∑
i=1

k∑
j=1

Kl
s(i, j)a

l
ic

l>
j (4)

where al
i, c

l
i are i-th column vectors for Al, Cl respectively. In SVD

diagonal adaptation, Kl
s is a diagonal matrix and is formulated as a

linear interpolation of rank-1 bases as below:

Wl
s ≈

k∑
i=1

Kl
s(i, i)a

l
ic

l>
i . (5)

2.2. Factorized Hidden Layer (FHL) Adaptation

In the standard SaT where only an SD bias is used, all the phonemes
of a speaker are adapted with a fixed bias which is not optimal.
Therefore, FHL includes an SD transformation in addition to the SD
bias.

hl = σ(Wl
sh

l−1 + bl
s) (6)

where the SD transformation matrix, Wl
s is given by:

Wl
s = Wl +

|dl
s|∑

i=1

dl
s(i)B

l
i (7)

where {Bl
1,B

l
2..,B

l
|dl

s|
} is the set of basis for the SD transforma-

tion and dl
s ∈ R|d

l
s| is the SD interpolation vector. Similarly, the

SD bias vector, bl
s, for hidden layer l is given by:

bl
s = bl +

|vl
s|∑

i=1

vl
s(i)u

l
i (8)

where {ul
1,u

l
2..,u

l
|vl

s|
} is the set of basis for the SD bias and vl

s ∈

R|v
l
s| is the SD interpolation vector.
Furthermore, in [25] Bl

i weight bases are constrained to be rank-
1 matrices. This allows us to formulate the SD transformation as:

Wl
s = Wl +

|dl
s|∑

i=1

dl
s(i)γ

l
iψ

l>
i

= Wl + ΓlDl
sΨ

l> (9)

where Bl
i = γl

iψ
l>
i and Dl

s ∈ R|d
l
s|×|d

l
s| is a diagonal matrix

(Dl
s = diag(dl

s)) and γl
i , ψ

l
i are i-th column vectors for Γl, Ψl

respectively.

2.2.1. Training

The diagonality of Dl
s matrix allows us to initialize dl

s with the
speaker i-vector and train the system in the form given in equation
9. The trained model is referred as the “initialized” model.

2.2.2. Adaptation

The adaptation can be performed in 3 ways namely, full, constrained
full and diagonal adaptation. For the full adaptation, for each FHL,
the entire matrix Dl

s is updated. In constrained full matrix adapta-
tion, Dl

s is updated while keeping the non-diagonal elements shared
among all FHLs. During diagonal adaptation, only the diagonal el-
ements of the matrix Dl

s are updated. More detailed descriptions of
FHL adaptation method including the per-speaker footprint calcula-
tions can be found in [25].

2.3. Comparison

Both of these adaptation methods use a linear combination of rank-1
bases to perform speaker adaptation. Their main difference lies in
the subspace construction. FHL adaptation constructs a speaker
subspace separate from the phoneme classification space while
SVD-based bottleneck adaptation shares the same subspace for both
phoneme classification and speaker adaptation. In the SVD-based
adaptation, rank-1 bases are interpolated with 1’s for all the train-
ing speakers and an SD interpolation vector is estimated for test
speakers. However, in FHL adaptation, speaker i-vector is used as
the interpolation vector which is later fine-tuned for test speaker
in an unsupervised fashion. Furthermore, the best performance for
SVD-based adaptation is reported when the adaptation is performed
in a single layer [10] while for the best performance, FHL subspaces
are shared among layers [25].

3. EXPERIMENTAL SETUP

3.1. Aurora 4

The initial experiments are conducted on the Aurora 4 noisy speech
recognition task. Aurora 4 contains multi-condition training set with
83 speakers for training and the development set with 10 speakers
for validation. We report the results of the test set with 8 speakers.

First, we extract the Mel-frequency cepstral coefficients (MFCCs)
from the speech using a 25 ms window and a 10 ms frame shift. Then
the linear discriminant analysis (LDA) features are obtained by first
splicing 7 frames of 13-dimensional MFCCs and then projecting
downwards to 40 dimensions using LDA. A single semi-tied co-
variance (STC) transformation [30] is applied on top of the LDA
features. The GMM-hidden Markov model (HMM) system for
generating the alignments for DNN training is trained on these 40
dimensional LDA+STC features. CMLLR features are extracted
after applying an CMLLR transform on top of these LDA+STC
features.

We train the DNN-HMM baselines on the LDA+STC and CM-
LLR features that span a context of 11 neighboring frames. Be-
fore being presented to the DNN, cepstral mean variance normal-
ization (CMVN) is performed on the features globally. To train the
network, layer-wise discriminative pre-training is used. The initial
DNN has 7 sigmoid hidden layers with 2048 units per layer, and
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Table 1. Aurora 4 : Word Error Rate (WER %) for DNN baselines
trained on LDA+STC features.

Model Test Set #params

Full-rank Baseline 11.9 30 M

Low-rank Baseline 11.8 6.5 M

around 2000 senones as the outputs. All the DNNs are trained to op-
timize the cross-entropy criterion with a mini-batch size of 256. We
use CNTK [31] to train the DNNs. The Kaldi [32] is used to build the
GMM-HMM systems and for the i-vector extraction. The i-vectors
are trained on top of the corresponding acoustic features. The UBM
consist of 128 full Gaussians. All decodings are performed with the
pruned 5K trigram language model of WSJ0. For all the models,
alignments from the GMM-HMM system are used.

3.2. AMI

Next, we use the AMI corpus which contains about 100 hours of
meetings conducted in English. The speech is recorded by multiple
microphones, including one IHM and a uniform microphone circular
array. In experiments, we use the IHM data and the speech from the
first microphone in the array which is known as the SDM. We use
the ASR split [33] of the corpus where 78 hours of the data are used
for training while about 9 hours each are used for evaluation and
development sets. We use 90% of the training set for training, and
the rest is used as the validation set. The results are reported on the
evaluation set.

For both IHM and SDM datasets, we follow the same steps men-
tioned in the Aurora 4 experimental setup to generate the CMLLR
features. For both tasks, GMM-HMM systems that are used to ob-
tain the training alignments are trained on CMLLR features. DNN
baselines are also trained on CMLLR features and have 6 sigmoid
hidden layers with 2048 units per layer, and around 4000 senones as
the outputs. For decodings, we use the trigram language model as
used in Kaldi, which is an interpolation of trigram language models
trained on AMI and Fisher English transcripts.

4. RESULTS

Table 1 shows results for the baseline models trained on top of the
LDA+STC features. The full-rank model is restructured using SVD
to obtain the low-rank baseline. We keep the 80% of the total singu-
lar values for the weight matrix between the input and the first hidden
layer, and only 40% of the total singular values are kept for the rest
of the weight matrices. As can be seen, the number of parameters
can be reduced from 30M to 6.5M without any loss in accuracy.

Table 2 presents the layer-wise results of SVD full and SVD
diagonal adaptation experiments. For each layer, the speaker spe-
cific footprint is also mentioned. For SVD full adaptation, we ob-
serve significant performance degradations when layer 6 or layer 7
is adapted. A possible reason for this is that the upper layers are
more relevant to the phoneme classification, therefore including the
speaker information degrades the performance. As can be clearly
seen the best performance (8.8%) is reported when SVD full adap-
tation is performed in layer 3 or layer 4. Therefore, in the rest of
the experiments, the SVD full adaptation is performed in layer 3.
The speaker specific footprint is in thousands for SVD full adapta-
tion. It is possible to reduce the per-speaker footprint by performing
SVD diagonal adaptation. Last two columns of Table 2 presents the

Table 2. Aurora 4 : WER % for layer-wise SVD full and SVD
diagonal adaptation for the low-rank baseline trained on LDA+STC
features.

Layer
SVD full SVD diagonal

WER % Footprint (k ∗ k) WER % Footprint (k)

1 11.2 30976 (176*176) 11.4 176

2 8.9 53824 (232*232) 23.7 232

3 8.8 53824 (232*232) 13.4 232

4 8.8 53824 (232*232) 11.5 232

5 9.0 57600 (240*240) 11.6 240

6 85.5 61504 (248*248) 89.4 248

7 57.0 78400 (280*280) 98.2 280

Table 3. Aurora 4 : WER % for various adaptation methods for both
full-rank and low-rank models trained on LDA+STC features.

Method Full-rank Low-rank Footprint

Baseline 11.9 11.8 -

Baseline + LHUC 10.0 9.7 14336

Baseline + SVD full - 8.8 53824

4 FHLs initialized 10.6 10.7 100

4 FHLs + diagonal 9.0 9.0 500

4 FHLs + constraind full 8.4 8.3 10400

4 FHLs + full 8.3 8.2 40100

results. We observe performance degradations for most of the lay-
ers except for layers 1, 4 and 5. The best performance (11.4%) is
reported for the layer 1, which is significantly lower than the best
performance (8.8%) of the SVD full adaptation.

Table 3 summarizes the results for Aurora 4 LDA+STC features
for both full-rank and low-rank models. The learning hidden unit
contributions (LHUC) adaptation improves the performance signifi-
cantly over the baselines. The performance of the SVD full adapta-
tion (8.8%) is significantly better than the that of LHUC adaptation
(9.7%). Since Aurora 4 has 70.3 minutes per speaker for adapta-
tion, the large number of adaptation parameters estimated in SVD
full adaptation results in more gains. We present the results for FHL
adaptation on both full-rank and low-rank models because it facil-
itates direct comparisons with SVD-based adaptation. As in [25],
we use a model with 4 FHLs where an SD bias is connected to the
first layer and SD transformations are connected to the 4 lowest lay-
ers. For both full-rank and low-rank models, FHL adaptation with
4 FHLs reports similar gains. The performance (9.0%) of diago-
nal adaptation with 4 FHLs is slightly worse than the performance
(8.8%) of SVD full adaptation. However, we can get a 99.8% of per-
speaker footprint reduction when 4 FHLs with diagonal adaptation
is used in comparison to SVD full adaptation. Both constrained full
and full adaptations with 4 FHLs performed better than the SVD full
adaptation while keeping a smaller per-speaker footprint. We get the
best performance when full adaptation is performed on the 4 FHLs
model for both full-rank and low-rank models.

Next, we present the results for Aurora 4 models trained on CM-
LLR features in Table 4. The FHL adaptation experiments on the
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Table 4. Aurora 4 : WER % for various adaptation methods for both
full-rank and low-rank models trained on CMLLR features.

Method Full-rank Low-rank Footprint

Baseline 9.5 9.5 -

Baseline + SVD full - 7.5 53824

4 FHLs initialized 8.8 9.1 100

4 FHLs + diagonal 7.9 8.2 500

4 FHLs + constrained full 7.3 7.5 10400

4 FHLs + full 7.2 7.3 40100

Table 5. AMI IHM : WER % for various adaptation methods for
both full-rank and low-rank models trained on CMLLR features.

Method Full-rank Low-rank Footprint

Baseline 26.3 26.6 -

Baseline + SVD full - 25.2 53824

4 FHLs initialized 25.7 26.0 100

4 FHLs + diagonal 24.4 24.7 500

4 FHLs + constrained full 24.7 24.7 10400

4 FHLs + full 24.8 24.7 40100

full-rank model perform slightly better than the low-rank experi-
ments. Similar to the LDA+STC models, the best performance of
is reported when the full adaptation is performed on the models with
4 FHLs.

In Table 5, we investigate the various unsupervised adaptation
techniques mentioned in this paper on the AMI IHM dataset. We
observe a slight performance degradation when the full-rank base-
line is restructured using SVD to get the low-rank baseline model.
This performance degradation is also reflected in the 4 FHLs initial-
ized model as well as the diagonally adapted 4 FHLs model. All
other adaptation methods perform better than the SVD full adapta-
tion. One reason can be that on the AMI evaluation set the data per
speaker is smaller (32.2 minutes) compared to the of Aurora 4 (70.3
minutes). For both full-rank and low-rank experiments, the best per-
formance is reported for 4 FHLs with the diagonal adaptation which
is a 1.9% absolute improvement over the respective baselines.

Table 6 shows results on the AMI SDM dataset. The low-rank
baseline improves the performance slightly by 0.5% over the full-
rank baseline. In addition, we only observe a 0.6% slight perfor-
mance improvement from the SVD full adaptation over the low-rank
baseline. We believe this is because lot of adaptation parameters
are needed to estimate and the hypotheses used for unsupervised
adaptation is of low quality. The smaller gain of other adaptation
methods also supports this claim. For both, full-rank and low-rank
experiments, the best performance is reported for 4 FHLs with the
diagonal adaptation which is a 1.6% absolute improvement over the
respective baselines.

As can be clearly seen most of the performance gain of FHL
comes after the two-pass adaptation. Therefore, to evaluate the ro-
bustness of SVD full adaptation, in comparison to the two-pass adap-
tation of FHL, we perform SVD full adaptation on low-rank 4 FHLs
initialized models for all the datasets used in this paper. Table 7
presents the results. The best performance of 8.0% is reported when

Table 6. AMI SDM : WER % for various adaptation methods for
both full-rank and low-rank models trained on CMLLR features.

Method Full-rank Low-rank Footprint

Baseline 53.2 52.7 -

Baseline + SVD full - 52.1 53824

4 FHLs initialized 52.9 52.6 100

4 FHLs + diagonal 51.6 51.1 500

4 FHLs + constrained full 51.8 52.2 10400

4 FHLs + full 51.8 52.2 40100

Table 7. WER % after the SVD full adaptation of 4 FHLs Initialized
models trained on all datasets.

Dataset Features WER %

Aurora 4 LDA+STC 8.0

Aurora 4 CMLLR 7.2

AMI IHM CMLLR 25.0

AMI SDM CMLLR 52.1

the low-rank model with 4 FHLs is adapted using the SVD full adap-
tation for Aurora 4 LDA+STC features which is 0.2% absolute im-
provement over the 4 FHLs + full adaptation (Table 3). Similarly,
for Aurora 4 CMLLR experiments, 4 FHLs initialized + SVD full
reports 0.1% absolute improvement over the 4 FHLs + full adap-
tation (Table 4). This is due to that fact that Aurora 4 has a large
amount of speech (70.3 minutes) per-speaker for adaptation, and the
large number of adaptation parameters estimated in SVD full adap-
tation results in more gains. However, for more challenging AMI
IHM and AMI SDM tasks, 4 FHLs + diagonal adaptation outper-
forms the 4 FHLs + SVD full adaptation. Furthermore, 4 FHLs +
SVD full adaptation increases the per-speaker footprint significantly
compared to all other test-only adaptation methods.

5. CONCLUSION

In this paper, we have investigated the effectiveness of subspace
methods for robust unsupervised adaptation. We compared two
state-of-the-art subspace methods. Namely, the singular value de-
composition (SVD)-based adaptation and the factorized hidden
layer (FHL) adaptation. The FHL adaptation constructs a speaker
subspace separate from the phoneme classification space while
SVD-based adaptation shares the same subspace for both phoneme
classification and speaker adaptation. We conducted experiments in
three benchmark ASR tasks: Aurora 4, AMI IHM and AMI SDM.
First, we investigated the SVD based bottleneck adaptation and the
FHL adaptation method individually. Then, we also investigated
the combination of SVD full adaptation with the FHL adaptation.
Our findings show that when a significant amount of adaptation
data is available, the SVD full adaptation can be combined with
the FHL adaptation to get the best performance. However, in more
challenging conditions where the adaptation data is limited or the
adaptation alignments are of low quality, having a separate subspace
for adaptation is more robust and also provides smaller per-speaker
footprint requirements.
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