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ABSTRACT
Grapheme-to-phoneme (G2P) conversion is an important
problem for many speech and language processing applica-
tions. G2P models are particularly useful for low-resource
languages that do not have well-developed pronunciation
lexicons. Prominent G2P paradigms are based on initial
alignments between grapheme and phoneme sequences. In
this work, we devise new alignment strategies that work ef-
fectively with recurrent neural network based models when
only a small number of pronunciations are available to train
the models. In a small data setting, we build G2P models
for Pashto, Tagalog and Lithuanian that significantly outper-
form a joint sequence model and a baseline recurrent neural
network based model, giving up to 14% and 9% relative re-
ductions in phone and word error rates when trained on a
dataset of 250 words.

Index Terms— grapheme-to-phoneme conversion, low-
resource languages, recurrent neural network models

1. INTRODUCTION

The grapheme-to-phoneme (G2P) conversion task can be de-
fined as follows: Given a grapheme sequence representing
a word, what is its corresponding most likely pronunciation
(i.e. phoneme sequence)? While some languages like Span-
ish and Haitian Creole have systematic grapheme to phoneme
mappings, many languages like English, French and Arabic
have irregular G2P correspondences, thus making pronuncia-
tion harder to model.

G2P models are routinely employed in speech synthesis
systems and automatic speech recognition (ASR) systems.
G2P models are essential for ASR systems in languages
that do not have pre-built dictionaries to train pronunciation
models. Even when pronunciation lexicons are available,
G2P models can be used to derive pronunciations for out-of-
vocabulary (OOV) words that do not appear in the dictionary.
Related Work: In the literature on G2P conversion, joint
sequence models are a popular paradigm [1, 2, 3, 4]. In
this class of models, grapheme and phoneme sequences are
first aligned to form a sequence of joint G-P tokens (called
graphones). A joint N-gram model trained on graphone

sequences can then be used to predict pronunciations for
new words. In recent work, deep neural network-based ap-
proaches have emerged as the new state-of-the-art on standard
English G2P tasks [5, 6, 7]. Prior work on neural network-
based models for G2P relied on sufficiently large dictionaries
to train the G2P models, which are hard to obtain for low-
resource languages. In prior work, pronunciation models
for low-resource languages were built using semi-automatic
bootstrapping algorithms [8, 9, 10] or acoustic data-driven
methods [11, 12]. In this work, we explore how to effectively
train neural models for G2P in low-resource settings.

Our contribution: In low-resource settings, representations
are crucial for neural network models much more so than
when large amounts of data are available. In this work, our
contribution is to develop such representations that help us
significantly outperform state-of-the-art G2P systems when
limited training data is available. Specifically, we designed
novel representations for aligned grapheme-phoneme se-
quences which are more amenable to learning using recurrent
neural networks (RNN). We evaluate our techniques on three
different languages and show consistent improvements in
G2P performance with small amounts of training data.

2. USING ALIGNMENTS IN G2P FOR SMALL DATA

Given the grapheme sequence of a word and the phoneme
sequence corresponding to its pronunciation, an alignment
strategy associates short segments (often of length 1) of the
first sequence with short segments of the second sequence. A
phonologically meaningful alignment strategy can typically
be learned from data using an expectation-maximization
(EM) based algorithm [2]. Some of the best G2P solutions
depend on such alignment strategies [3, 4, 6].

A challenge in exploiting alignments for G2P, especially
in RNN-based models, is that the alignment information is
available only for the training data, and is not available dur-
ing test time. Note that multiple graphemes may align with
a single phoneme and vice-versa, and during decoding the
given grapheme sequence does not indicate such groupings.
This can be remedied by requiring the alignment to be a
“1-to-2” alignment, where every grapheme in the input se-
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quence is aligned to a single phoneme, a phone bigram or
an empty symbol (as in [6]). We will refer to this alignment
as BIGRAM-ALIGN. Here, the grapheme sequence remains
unchanged, using only single graphemes, and without any
empty symbol or grapheme multi-grams.
Limitations of BIGRAM-ALIGN: We observed two limi-
tations of BIGRAM-ALIGN when dealing with small data.
Firstly, using phone bigrams as part of the output alphabet
leads to insufficient coverage of the output alphabet in the
training data. Secondly, alignments that use phone bigrams
are more error-prone when the aligner is trained on a small
amount of data. For example, a Pashto word containing three
graphemes g1 g2 g3, pronounced as “m u z e R”, should be
aligned with the graphemes as (m+u), (z+e), (R). However,
in a small data setting, we observed that the word gets incor-
rectly aligned as (m), (u + z), (e + R). Both these issues can
adversely affect the accuracy of the RNN models.
Alignment INTER-ALIGN: To address the above issues, we
propose a new alignment representation INTER-ALIGN that
avoids the use of phoneme bigrams. A key requirement of
an alignment representation is that it should be possible to
deduce the grapheme part of the alignment from the original
grapheme sequence alone. In the case of BIGRAM-ALIGN, the
grapheme part of the alignment was the original grapheme
sequence itself. In our case, instead, it will be the original
grapheme sequence interleaved with a new symbol #. Intu-
itively, this extra spacing allows up to two phonemes to be
aligned with each grapheme, without the need for combining
them into a bigram symbol.

Below, we describe in more detail how an INTER-ALIGN
alignment is obtained. First, we find a one-to-one alignment
between the grapheme and phoneme sequences in the training
data. For example, suppose a grapheme sequence “g1 g2 g3”
and a phoneme sequence “p1 p2 p3” are aligned as follows:

g1 g2 − g3
− p1 p2 p3

(1)

where − indicates an empty symbol.
We further modify the aligned grapheme sequence by in-

serting a new symbol (call it “#”) between every pair of con-
secutive grapheme symbols other than the empty symbol, and
also at the beginning if the aligned grapheme sequence does
not begin with the empty symbol. (We use end-of-sequence
markers to pad the grapheme/phoneme sequences to a fixed
length; this precludes the need to insert # at the end of the
grapheme sequence.) Also, we modify the phoneme sequence
by inserting “#” for every “#” seen in the grapheme sequence,
as shown in the example below:

# g1 # g2 − g3
# − # p1 p2 p3

(2)

This yields a phoneme sequence which will be aligned against
a fixed representation of grapheme sequences, obtained by in-

terleaving the grapheme sequence with #, as shown below.

# g1 # g2 # g3
# − # p1 p2 p3

(3)

We point out that grapheme sequence in (3) is the same as that
in (2) if the − in the latter is replaced by the # symbol. This
will be the case as long as there are no two consecutive empty
symbols or a trailing empty symbol in the original aligned
grapheme sequence (as in (1)).1

Alignment PAIR-ALIGN: We also consider a modification
of INTER-ALIGN, called PAIR-ALIGN, in which the grapheme
sequence is not interleaved with # symbols, but instead we
align each grapheme against a pair of phoneme symbols. For
example, instead of the alignment in (3), g1 g2 g3 will be
aligned with (#,−) (#, p1) (p2, p3). Note that this is differ-
ent from BIGRAM-ALIGN in that instead of using unigram and
bigram phoneme symbols, each grapheme is always aligned
with a pair of unigram phonemes. In the RNN models dis-
cussed in the next section, this difference is significant.

3. RNN-BASED G2P MODELS FOR SMALL DATA

Figure 1(A) shows the architecture of a baseline RNN model
adapted from [6]. Each input xt at time step t is fed as input
to a recurrent hidden node whose state ht is a function of xt

and the state from the previous time step ht−1. We use bidi-
rectional hidden layers [13] in BIGRAM-ALIGN; Figure 1(A)
shows a stack of two bidirectional hidden layers unrolled over
three time-steps. Each bidirectional layer contains two hidden
layers where one layer has recurrent connections from past
time-steps (going left to right) and the other has connections
in the backward direction (going right to left). Activations
from both layers are concatenated and passed to subsequent
layers as input. Outputs from the topmost hidden layer in the
stack are projected to the target space (using a layer of nodes
shown as triangles).2 Following [6], each node in the forward
layer of the topmost bidirectional layer also receives the out-
put prediction from the previous time-step as input.

This baseline model uses output aligned according to
the BIGRAM-ALIGN representation. Thus the output al-
phabet consists of the empty symbol, individual phonemes
and phoneme bigrams. Figure 1(B) shows the RNN model
adapted to use INTER-ALIGN where the output alphabet con-
sists of the empty symbol and individual phonemes. And,
Figure 1(C) shows the RNN model used with PAIR-ALIGN
where outputs from the topmost hidden layer in the stack are
duplicated and projected to a pair of unigram phonemes.

1In our experiments, about 1% of the training utterances did not conform
to this condition. In these cases, for the training grapheme sequences the
fixed representation with alternating # symbols was used, resulting in a slight
misalignment with the phoneme sequences.

2The output projection layer is preceded by a recurrent layer in [6]. In our
experiments, we did not include this recurrent layer as this had no significant
effect in the final error rates.
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ʔ+i p

p ai ai
(A) (B) (C)

# i # p # a p

ɐ # i # p # ɐ ʔ i # p # ɐ

Fig. 1. (A) Baseline RNN architecture used with BIGRAM-ALIGN. “P+i” denotes a phone bigram aligned with the grapheme
“i”. (B) RNN architecture used with INTER-ALIGN. (C) RNN architecture used with PAIR-ALIGN.

4. EXPERIMENTAL DETAILS

4.1. Data description

We used pronunciation lexicons for three different languages
from language collections that were released as part of the
IARPA Babel program [14]: Pashto, Tagalog and Lithuanian.
We preprocessed the lexicons to remove all syllable break and
word boundary markers from the pronunciations.

We simulated low-resource conditions for each language
by randomly sampling a small subset of words (of size N ) in
order to train our G2P models. We assume that the grapheme
and phoneme vocabularies for each language are known a pri-
ori. Using this information, we randomly sample the pro-
nunciation lexicon and construct a minimal set of words that
fully cover the grapheme and phoneme vocabularies i.e. each
grapheme and phoneme appears in at least one word. Assum-
ing the minimal set contains N̄ words, we randomly sample
the remaining N − N̄ words from the pronunciation lexicon
to create our training data. In this manner, we construct train-
ing sets containing 250, 500 and 1000 words for each of the
three languages; we will refer to these training conditions as
T-250, T-500 and T-1000. We also construct development
and evaluation sets for each language; word and phone counts
corresponding to these data splits are detailed in Table 1.

PASHTO DEV 1400 words 8709 phones
(50 graphemes, 44 phonemes) EVAL 1454 words 8908 phones

TAGALOG DEV 1678 words 11802 phones
(53 graphemes, 38 phonemes) EVAL 1598 words 11419 phones

LITHUANIAN DEV 1697 words 12797 phones
(58 graphemes, 89 phonemes) EVAL 1997 words 15317 phones

Table 1. Statistics of development/evaluation data.

4.2. RNN implementation

We used 3-layer bi-directional Long Short-term Memory
(LSTM) cells [15] for all three RNN models: BIGRAM-
ALIGN, PAIR-ALIGN and INTER-ALIGN. Alignments to train
the BIGRAM-ALIGN model were generated using the m2m-
aligner software package [2]. Alignments for both the in-
terleaved RNN models PAIR-ALIGN and INTER-ALIGN were
constructed using the alignment module in the Phonetisaurus
toolkit [4]. All the RNN hyperparameters were determined
by tuning on the development set of Lithuanian; this setting
was then used for the other two languages.

We used 3-layer bidirectional LSTM models, with a 32-
dimensional projection layer to encode the input sequences
and 256 nodes in each hidden layer. We used the Adam op-
timizer [16] to learn the weights of the network with a de-
fault learning rate of 0.001. All the RNN models were imple-
mented using TensorFlow [17].

5. RESULTS AND DISCUSSION

Table 2 shows phone error rates (PER) and word error rates
(WER) for all three training conditions using the three RNN
models described in Section 3. From Table 2, we observe
that RNN models using the interleaved alignment strategies
(PAIR-ALIGN and INTER-ALIGN) perform consistently better
than BIGRAM-ALIGN.

In the training condition T-250, INTER-ALIGN signifi-
cantly outperforms (at p < 0.01) the other two alignment
strategies in all three languages. (Statistical significance was
computed using the MAPSSWE test, which is implemented
in the NIST Scoring Toolkit.) For instance, from Table 2,
for T-250 there is a relative PER drop of 14% for Lithuanian
and a relative WER drop of 9% for Tagalog on the evalua-
tion sets. We also observe that the advantage of using INTER-
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LANG SYSTEM

T-250 T-500 T-1000
DEV EVAL DEV EVAL DEV EVAL

PER WER PER WER PER WER PER WER PER WER PER WER

PASHTO

BIGRAM-ALIGN 25.87 80.50 26.48 80.47 18.34 66.79 19.40 69.67 14.90 56.86 16.23 61.07
PAIR-ALIGN 19.66 69.07 20.73 70.98 15.57 59.00 16.74 63.27 14.16 56.21 14.98 57.08

INTER-ALIGN 17.92∗ 64.86∗ 18.21∗ 66.64∗ 14.81∗ 57.21∗ 14.99∗ 58.94∗ 13.63∗ 54.57 13.81∗ 51.65∗

TAGALOG

BIGRAM-ALIGN 15.15 61.03 15.46 61.20 11.69 51.01 11.90 52.50 9.34 43.33 9.34 44.62
PAIR-ALIGN 13.23 55.78 13.67 57.26 11.12 50.72 11.16 49.50 9.16 43.27 9.44 46.31

INTER-ALIGN 12.86∗ 55.24∗ 13.01∗ 56.26∗ 10.82 50.06 11.32 51.44 9.17 44.28 9.36 45.81

LITHUANIAN

BIGRAM-ALIGN 13.54 71.01 13.50 69.70 10.40 60.70 10.32 59.94 8.77 52.03 9.07 53.33
PAIR-ALIGN 12.60 68.71 12.59 69.00 10.10 58.81 10.45 59.89 8.87 51.50 9.15 52.83

INTER-ALIGN 11.71∗ 65.70∗ 11.68∗ 65.25∗ 9.68 57.63 9.92 59.49 8.60 50.50 8.90 51.93

Table 2. PER/WER results for three languages in three training conditions. The best numbers for each training condition in
each language are in bold. Systems that significantly outperform the other two (at p < 0.01) are marked with an asterisk.

LANG SYSTEM

T-250 T-500 T-1000
DEV EVAL DEV EVAL DEV EVAL

PER WER PER WER PER WER PER WER PER WER PER WER

PASHTO
PSAURUS 19.32 70.50 19.31 69.81 15.86 61.86 16.61 61.83 14.56 55.93 14.67 56.05

INTER-ALIGN 17.92∗ 64.86∗ 18.21∗ 66.64∗ 14.81∗ 57.21∗ 14.99∗ 58.94∗ 13.63∗ 54.57∗ 13.81∗ 51.65∗

HYBRID 17.28∗ 64.64∗ 17.33∗ 64.99∗ 13.95∗ 56.07∗ 14.52∗ 57.29∗ 13.01∗ 52.93∗ 13.10∗ 49.93∗

TAGALOG
PSAURUS 13.43 58.58 13.59 58.95 11.49 52.62 11.43 53.00 9.91 46.01 9.68 47.12

INTER-ALIGN 12.86 55.24 13.01 56.26 10.82 50.06 11.32 51.44 9.17 44.28 9.36 45.81
HYBRID 12.24∗ 53.99∗ 12.23∗ 53.82∗ 10.51∗ 48.57∗ 10.94∗ 50.38∗ 8.63∗ 41.42∗ 8.91∗ 43.87∗

LITHUANIAN
PSAURUS 16.62 73.90 17.19 76.11 13.22 64.88 13.40 66.45 10.82 57.57 11.20 59.69

INTER-ALIGN 11.71∗ 65.70∗ 11.68∗ 65.25∗ 9.68∗ 57.63∗ 9.92∗ 59.49∗ 8.60∗ 50.50∗ 8.90∗ 51.93∗

HYBRID 11.40∗ 64.70∗ 11.66∗ 64.90∗ 9.54∗ 57.22∗ 9.77∗ 59.19∗ 8.39∗ 50.38∗ 8.80∗ 52.13∗

Table 3. Comparison of PSAURUS with INTER-ALIGN and a hybrid system. Lowest error rates for each language in each
training condition are shown in bold. Asterisks indicate statistically significant improvement over PSAURUS.

ALIGN over BIGRAM-ALIGN diminishes as we increase the
number of training instances from T-250 to T-1000. We
expect BIGRAM-ALIGN to perform better with more training
data since the alignments from the m2m-aligner get more re-
liable as the number of training instances increase.

INTER-ALIGN significantly outperforms BIGRAM-ALIGN
in all three training conditions for Pashto. One potential rea-
son for the poor performance of BIGRAM-ALIGN could be
due to the absence of vowel markers in Pashto. The Arabic
script used for Pashto indicates long vowels but does not ex-
plicitly indicate short vowels in its orthography. This leads to
erroneous alignments when there is less data to learn from.

Table 3 shows a joint sequence 5-gram model trained
using the Phonetisaurus toolkit [4] (PSAURUS) in comparison
with INTER-ALIGN.3 INTER-ALIGN significantly outper-
forms PSAURUS in all training conditions (at p < 0.001) for
Pashto and Lithuanian. We also show a hybrid system that
combines the N-gram model in PSAURUS with INTER-ALIGN
by representing both models as finite state machines and
composing them. We scale the N-gram model before compo-

3Higher order (>5) N-gram models for PSAURUS did not improve the
error rates any further.

sition; the scaling factor was tuned on the development set for
each language. The hybrid system further lowers error rates
across all the training conditions for all three languages.

6. CONCLUSIONS

In this work, we demonstrate that in low-resource settings,
seemingly simple alterations to the representation of align-
ments in RNN G2P models yield significant improvements in
error rates over state-of-the-art baselines. This points to the
need for further research into designing representations that
improve the performance of neural network models when low
amounts of training data are available.
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