
EXPLOITING SEQUENTIAL LOW-RANK FACTORIZATION FOR MULTILINGUAL DNNS

Reza Sahraeian, Dirk Van Compernolle

KU Leuven - ESAT, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{Reza.Sahraeian,Dirk.VanCompernolle}@esat.kuleuven.be

ABSTRACT

DNNs have shown remarkable performance in multilingual scenar-
ios; however, these models are often too large in size that adaptation
to a target language with relatively small amount of data cannot be
well accomplished. In our previous work, we utilized Low-Rank
Factorization (LRF) using singular value decomposition for multi-
lingual DNNs to learn compact models which can be adapted more
successfully. In this paper, we address two problems associated with
that LRF scheme and we propose a compellingly simple methodol-
ogy to overcome them. First, factorizing all layers results in a huge
drop in performance and consequently a long recovery process is
required which is not practically efficient. Secondly, LRF can be
viewed as a regularization by which some noise is added to weight
layers; however, factorizing all layers together equates to adding too
much noise which results in bad performance. To mitigate these
problems, we propose to apply LRF sequentially. We demonstrate
that the lost information after factorizing one layer is small and can
be rapidly retrieved; hence, sequential factorization is more efficient.
Moreover, the sequential LRF adds only a small amount of noise
sequentially which is a better regularization. Our experiments are
conducted on five languages from the GlobalPhone dataset.

Index Terms— Multilingual DNNs, low-rank factorization

1. INTRODUCTION

In recent years, DNNs have been used in a large body of research to
exploit out-of-language data particularly for under-resourced speech
recognition [1, 2, 3, 4, 5]. The key assumption in multilingual DNNs
is that the hidden layers can be considered as a universal complex
feature transformation and can be shared across languages while the
softmax layers are language dependent [1, 6]. This suggests that the
hidden layers can be trained simultaneously for different languages
to benefit from each other. Furthermore, for a specific target lan-
guage, it has been shown that additional gain over the purely mul-
tilingual DNN can be obtained by adapting the multilingual DNN
using data from the target language [7].

The trend in DNNs is to increase the number of parameters to
fully exploit ever-increasing training data [8]. This, however, en-
tails long training time and slow prediction; and furthermore, once
DNNs are being deployed on mobile and embedded devices with
little memory, such large models cannot be stored. This dilemma
motivates several studies recently to investigate DNN size reduction
without hurting the performance. As examples, [9] proposed a pa-
rameter sharing scheme using a hash function and a drastic reduction
in model size was achieved. Another work proposed to sparsify the
weight matrices by employing regularizers [10]. Another popular
approach in this area is low-rank matrix factorization [11, 12, 13];
the core idea is to represent the weight matrix as a low-rank prod-
uct of two smaller matrices. Low-rank factorization (LRF) can be

employed either with a linear bottleneck [11] or singular value de-
composition (SVD) [12]. Very recently, LRF and parameter sharing
scheme have been effectively used to reduce the number of parame-
ters of a standard LSTM by 75% at a small cost of 0.3% increase in
WER [14].

While the main intent of the aforementioned studies is to reduce
the model size and accelerate the DNN training and test time, no sig-
nificant improvement is achieved. However, we have shown in our
previous works that the model size reduction via LRF in a multilin-
gual DNN provides significant gain over a conventional multilingual
DNN [15, 16]. This improvement is mainly achieved in the adap-
tation phase where much smaller number of parameters need to be
adapted to a specific target language with relatively small amount
of data. Moreover, it has been shown that factorizing only the final
weight layer is beneficial in a multilingual DNN with shared hidden
layers which can be due to the fact that the number of parameters
which are trained with language specific data is reduced [15, 17].

Despite the gain obtained from LRF of multilingual DNN, there
still remain some issues with respect to efficiency and accuracy. In
[15], we proposed to apply SVD to all hidden layers at the same
time; this normally results in a huge model size reduction and conse-
quently the multilingual DNN moves away from its optimal trained
state. To remedy this problem, as suggested in [12], we need to re-
train the whole network. However, depending on how far the factor-
ized model is moved from the original DNN, we may require a long
retraining process to gain back the lost information as much as pos-
sible. Moreover, the performance drop in the factorized DNN might
never be completely recouped with retraining if the model is too far
from the original one [12]. We observed in [15] that even if the fac-
torized network is not as good as the original one, when adapting the
network from this starting point to a target language, we ultimately
reach a better performance. Yet, by regaining more information after
the LRF, a more informative factorized model will be deployed for
adaptation and thus better performance might be obtained.

In this respect, the motivation of this paper is to propose an ef-
ficient framework for LRF of multilingual DNNs. Our proposed ap-
proach is compellingly simple: we deploy the LRF in a sequential
manner. In other words, the SVD is applied layer by layer and after
each layer is factorized, DNN is retrained with a small number of
iterations only. We demonstrate that this technique is very efficient
and fast in regaining the lost information from the compressed DNN
compared to the conventional LRF. Moreover, by viewing LRF as a
regularizer of the model space which can improve the performance
[18], factorizing all layers together may degrade the DNN perfor-
mance by adding a large amount of noise while the sequential LRF
adds small amounts of noise sequentially which we believe is a better
generalization scheme. The rest of the paper is organized as follows.
In section 2, we describe the LRF and sequential LRF for multi-
lingual DNNs. The experimental setup and results are presented in
sections 3 and 4. Finally, we have concluding remarks.

5025978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

2. LRF IN MULTILINGUAL DNNS
2.1. Multilingual DNNs

A conventional multilingual DNN with shared hidden layers has
been formulated in the multi-task learning framework [2]. The hid-
den layers as feature extractors and the classifiers are jointly opti-
mized on the shared data for different languages. The output layers
are usually context-dependent states determined by standard cluster-
ing algorithms from previously trained HMMs [19].

Given a target language, multilingual DNN performance can be
further improved by adjusting the parameters of the whole network
through retraining the DNN with data of the target language which
is often termed as adaptation [7]. However, the improvement is re-
stricted to the amount of adaptation data and size of the DNN; usu-
ally, the adaptation data from the target language is relatively small
and the largely parametric multilingual DNN is likely to overtrained.
We have shown that the multilingual DNN adaptation benefits from
LRF as the model size is reduced [15]. In the next section we briefly
explain LRF for multilingual DNNs.

2.2. Low-rank factorization (LRF)

The use of low-rank matrix factorization for DNN training is pro-
posed in [11] and [12] to reduce computational and space complexity
for monolingual DNNs. To this end, each connection weight matrix
can be factorized into smaller matrices and thereby the number of
parameters in the network is significantly reduced. Especially when
DNNs are trained with a large number of output targets, [11] shows
that LRF of the last weight layer reduces the number of parameters
of the DNN significantly.

Let us denote the final weight matrix for language L by AL with
dimensions nH × nL

T where nH is the number of units in the last
shared hidden layer and nL

T is the number of output targets for lan-
guage L. If there is a rank nr for the weight matrix, then there
exists a factorization AL = BL × CL where BL and CL are full
rank matrices of size nH × nr and nr × nL

T respectively. Now, in
a multilingual low-resource scenario we may want to further reduce
the number of language dependent parameters by incorporating the
matrix BL in the layers that are shared across languages and thus
BL = B for all languages [17]. Then, for a language L′, we only
need to train an output weight matrix of dimensions nr×nL′

T , which
is much smaller than nH × nL′

T . It is worth noting that in this ap-
proach there exists one extra weight layer in the shared components
compared to the typical multilingual DNN; however, we have shown
in [15] that this is not very relevant.

In our work, LRF of the weight layers is done by using SVD
based model restructuring method in which a nH×nL

T weight matrix
layer AL is decomposed as:

AL
nH×nL

T
≈ UnH×nrΣnr×nrV

T
nL
T
×nr

(1)

Then, we consider B = UnH×nr and CL = Σnr×nrV
T
nL
T
×nr

and

replace AL with these two smaller matrices as described in [12].
Furthermore, we proposed in [15] to extend LRF to other weight
layers which leads to a huge reduction of the number of parameters
in the multilingual DNN system. For the hidden layers, factorization
is more straightforward and we simply need to factorize the weight
matrix of size nH × nH into smaller matrices of size nH × nr and
nr × nH . It is also worth noting that in our LRF approach we skip
factorizing the input weight layer as it is a very small matrix com-
pared to the other weight matrices. The LRF is applied after initial
training of the multilingual DNN and before adaptation to a target
language data.

LRF can also be accomplished by configuring the DNN with a
linear bottleneck and let the factorization being learned during DNN
training, and since parameters of DNN is reduced before training,
the overall training time can be reduced as well [11]. The downside
of this method, however, is that the bottleneck dimension has to be
defined beforehand and for a new dimensionality we need to train a
new DNN. However, the main goal of this paper is to improve the
accuracy rather than decreasing training time; thus, SVD is applied
to factorize the weight layers so that nr can be tuned with less com-
putational complexity.

2.3. Sequential LRF

Although LRF in the way explained in the previous section provides
a huge model size reduction, it suffers from some issues. First of
all, factorizing all layers together can drastically move the network
away from the local optimum that was reached during training. This
necessitates a recovery stage which can be simply a retraining. How-
ever, if LRF leads to a huge reduction in number of parameters, a
large amount of noise is added to the model and consequently a long
retraining process is required. Not only is not this practically effi-
cient, but also the factorized model might not be recovered if there
is a huge drop in size and performance. The second issue is that
LRF of DNNs in the previous studies is mostly viewed as a way to
reduce the model size; however, if being employed properly, it can
take a role on regularization and improves the model performance
with respect to generalization. Nonetheless, we show in the exper-
iments that factorizing all layers together causes a huge damage to
the model performance and is not a good regularization method.

Being motivated by the aforementioned issues, we propose to
apply LRF sequentially to the weight layers. The reasoning is that
we believe factorization of only one layer adds only a small amount
of noise to the weight layer and does not drastically move the model
from its current state. Therefore, the chance to quickly retrieve the
small lost information increases. In terms of regularization, adding
small noise sequentially is a more appropriate methodology rather
than imposing a large amount of noise to the model only one time.

For implementation, we start from the output weight layer; once
this layer is factorized, we let the model to be retrained with the
whole multilingual data for a short time. Then, one layer before the
output one is factorized and again the whole model is retrained. This
procedure continues until all layers are factorized (except the first
input layer). If there are N samples in the multilingual training data
pool which are shuffled, we can manage to retrain the DNN after
each step of factorization using a subset of the training samples. For
example, if there are 8 weight layers to be factorized and we retrain
with N/8 samples after applying SVD to each layer, the whole fac-
torization will be finished after 1 epoch. The important question is
that how long each retraining stage needs to be. To answer this ques-
tion, we investigated several scenarios and we successfully show that
even in one epoch, the whole factorization can succeed.

3. EXPERIMENTAL SETUP

3.1. ASR systems

Monolingual reference systems were built using target language data
only. We only report the monolingual results using DNNs as they
outperform GMM systems. Monolingual DNNs were trained by
adopting the audio alignments from the conventional HMM/GMM
systems. The input features for the DNNs were mean and vari-
ance normalized 23-dimensional FBANK features being concate-
nated with 7 left and 7 right neighbor frames to yield an input feature

5026

Table 1. Baseline results in WER(%) for the five languages using
monolingual and multilingual systems.

Settings Monolingual
DNN

Multilingual DNN
Not adapted Adapted

FR Dev. 26.45 25.90 25.15
Eval. 23.90 23.65 23.48

SP Dev. 17.78 17.47 17.14
Eval. 10.42 9.73 9.57

PO Dev. 19.70 19.27 18.87
Eval. 20.97 20.48 19.84

RU Dev. 32.88 32.64 31.99
Eval. 31.37 30.60 30.25

GE Dev. 11.85 11.15 11.02
Eval. 19.49 18.78 18.36

vector size of 345; we observed that FBANK features outperform
MFCCs as input features for DNN.

The multilingual systems were based on multi-task learning of
DNNs. The neural network’s input features were the same as those
used in the monolingual DNNs except that normalization was not
applied. More details about the implementations are provided in the
experiment section. All the DNNs used in this study were trained
using a ReLU nonlinearity based on greedy layerwise supervised
training [20]. The initial and final learning rates were specified by
hand and equal to 0.01 and 0.001 respectively. We used the Kaldi
ASR toolkit [21] in our experiments.

3.2. GlobalPhone
The GlobalPhone corpus is a multilingual text and speech corpus
that covers speech data from 20 languages [22]. In this work, multi-
lingual data consist of five languages from the GlobalPhone dataset:
French (FR), Spanish (SP), Portuguese (PO), Russian (RU) and Ger-
man (GE) and the available training data for these languages are
22.74hr, 22.71hr 21.10hr 17.55hr and 14.85hr respectively. The de-
tailed statistics for these languages are presented in [22]. The recog-
nition task is a standard word recognition task using a trigram lan-
guage model obtained from Karlsruhe University1.

4. EXPERIMENTS

First, we constructed baseline systems for the five languages in both
monolingual and multilingual fashions. Following the setup in [1],
the number of target context-dependent states was set to 3100 for
each language. The monolingual results for both development (Dev.)
and evaluation (Eval.) sets are presented in Table 1. Also, a multi-
lingual DNN was trained with a dedicated softmax layer for each
language while the hidden and input layers were shared. We used a
DNN with 8 hidden layers for the multilingual setting and the num-
ber of nodes was 1500 per layer; noting that these values were tuned.
The performance of the multilingual systems with and without adap-
tation is presented in Table 1. From Table 1 we can observe that the
multilingual DNN performs the best; moreover, adaptation yields a
small improvement which is a typical behaviour for a multilingual
DNN with a large number of parameters.

4.1. Low-rank factorization
We carried out sets of experiments to investigate the effectiveness
and efficiency of LRF in the multilingual DNN. To this end, SVD
was applied on all the weight layers except the input weight layer

1http://csl.ira.uka.de/GlobalPhone/

0 1 2 3 4 5
15

20

25

30

35

40

45

of epochs

W
E

R
(%

)

Factorized DNN with retraining

Original multilingual DNN

(a) Portuguese

0 1 2 3 4 5
15

20

25

30

35

40

45

50

of epochs

W
E

R
(%

)

Factorized DNN with retraining

Original multilingual DNN

(b) Spanish

Fig. 1. Tracking the WER(%) in retraining the low-rank factorized
multilingual DNN.

of the not adapted multilingual DNN, and afterwards the whole net-
work was retrained with multilingual data. Following our setup in
[15], we consider nr = 500. Since in our experiment nH = 1500,
this factorization reduces the number of parameters in each hidden
weight layer by a factor of 0.66. In total, the reduction in DNN
model size for each language is around 63%; this suggests that in
the adaptation phase we have much smaller number of parameters
to adapt to a target language. However, the factorization degrades
the performance of the multilingual DNN and in order to regain this
performance we need to retrain the multilingual DNN. Figure 1 re-
veals how the performance of the multilingual DNN changes after
factorization and during the course of retraining; the results in this
figure are presented on Dev. sets for SP and PO as two examples.

The following observations can be made from Figure 1. First,
the LRF degraded the performance of multilingual DNN drastically
which is not surprising as a big compression had happened. How-
ever, it can be seen that during the retraining process a big part of
the gap was filled. After five epochs, the performance of the fac-
torized multilingual DNN almost equals the original intact multilin-
gual DNN for Portuguese; for Spanish, however, there still remains a
small difference after 5 epochs. We could indeed increase the num-
ber of epochs and hopefully better convergence would have been
obtained for Spanish, but we should note that since retraining is ap-
plied multilingually, increasing the number of epochs might lead to
overfitting for other languages. Besides, it is not efficient to have a
long retraining because the choice of nr is usually set empirically
and we are interested in finding the proper value rapidly.

We then deployed the factorized multilingual DNN obtained
from the previous retraining stage in the adaptation phase. Since the
DNN size is reduced, the model adaptation is expected to succeed
more effectively. Table 2 shows the WER for different languages
using the factorized multilingual DNN before and after adaptation.
The starting point for adaptation to the specific target language was
the factorized model which had been retrained multilingually for 5
epochs. The following trends are apparent from Table 2. First, the
factorized multilingual DNN being retrained for 5 epochs mostly
performs worse than the original multilingual DNN, and for lan-
guages like Spanish and Russian the rise in WER is pronounced.
However, when the factorized model is adapted to the target lan-
guages, the WERs reduced noticeably for all languages. This can
be understood by the reasoning that LRF has created a network with
fewer, but more relevant parameters. In this set of experiments the
learning rate for adaptation to the target languages was set to 0.0001.

4.2. Sequential low-rank factorization
In this part of experiments, we investigated the effectiveness and
efficiency of the sequential LRF described in section 2.3. Towards
this goal, like the experiments for the conventional LRF, the original
multilingual DNN without adaptation was deployed as the starting
point. However, instead of factorizing all weight layers at the same

5027

Table 2. Comparing WER(%) using LRF with and without adapta-
tion with the adapted standard multilingual DNN.

Target languages LRF Baseline
multilingual DNNNot

adapted Adapted

FR Dev. 26.04 25.07 25.15
Eval. 24.25 23.40 23.48

SP Dev. 19.85 16.37 17.14
Eval. 10.16 9.14 9.57

PO Dev. 19.24 18.38 18.87
Eval. 19.75 19.47 19.84

RU Dev. 34.42 31.32 31.99
Eval. 33.26 29.96 30.25

GE Dev. 11.04 10.27 11.02
Eval. 17.74 16.79 18.36

Table 3. Comparing WER(%) on Dev. sets using conventional LRF
and sequential LRF for different retraining durations.

Target
languages

Retraining duration (epochs)
for sequential LRF LRF

1 2 3 4 5
FR 25.90 24.67 24.57 24.54 24.44 26.04
SP 18.11 16.95 16.82 16.32 16.36 19.85
PO 20.08 19.14 18.99 19.01 18.80 19.24
RU 34.61 33.39 32.99 33.08 32.93 34.42
GE 11.67 10.89 10.51 10.52 10.70 11.04

time, we applied the factorization layer by layer. Again, we set nr =
500 for the sake of fair comparison to the previous experiments. At
the beginning, only the final weight layer was factorized and the
model was retrained for the fixed number of samples. Then, the next
weight layer right before the final weight layer was factorized and
again model was retrained for a while. This procedure continued
until all hidden weight layers were factorized.

First, we examined different scenarios in terms of the retrain-
ing duration after each factorization. Since the multilingual DNN
in our work includes eight hidden layers, factorization needed to be
applied eight times (we don’t factorize the input weight layer). After
each factorization, the model was retrained for the specified number
of training samples. Table 3 summarizes the results obtained from
the sequential LRF for different retraining duration on Dev. sets of
different languages. In this table, “retraining duration” refers to the
number of epochs required to have all layers factorized. The last col-
umn presents the results from Table 2 where we applied LRF to all
layers and retrained the model for 5 epochs.

Interesting observations are made from Table 3. First of all, it
can be seen that by applying sequential LRF, the proper compressed
model can be obtained in a very short retraining duration. For exam-
ple in Fig. 1, we observed that five epochs of retraining with multi-
lingual data was required to almost regain the lost information from
LRF of all layers for Spanish; however, when LRF is employed se-
quentially in one epoch, we achieved the performance which is even
closer to the original multilingual DNN. The results of applying se-
quential LRF in small number of epochs for different languages sug-
gest that factorizing one individual layer led to a small reduction in
model performance which was easily regained. The more interest-
ing point being apparent in Table 3 is that in many cases sequential
LRF even without adaptation improves the performance compared
to the original multilingual DNN shown in Table 1. For example,
the original multilingual DNN provides a WER of 17.47% on Dev.
set for Spanish; taking this model as the starting point and apply-

Table 4. WER (%) for sequential LRF with and without adapta-
tion. Relative WERs reduction compared to the standard multilin-
gual DNN with adaptation are also presented.

Target
languages

Sequential LRF
in three epochs Relative

WER (%)
reductionNot

adapted Adapted

FR Dev. 24.57 24.01 4.5
Eval. 23.18 22.64 3.6

SP Dev. 16.82 15.94 7
Eval. 9.48 9.03 5.6

PO Dev. 18.99 18.00 4.6
Eval. 19.52 18.53 6.6

RU Dev. 32.99 30.52 4.6
Eval. 31.30 29.00 4.1

GE Dev. 10.51 10.10 8.3
Eval. 17.10 16.44 10.44

ing sequential LRF in the duration of 4 epochs, the WER reduces to
16.32%. However, we can observe that when LRF was applied to all
layers in one step, we could get the WER of 19.85% after retraining
for 5 epochs. This improvement can be attributed to the fact that by
factorizing only one weight layer a small amount of noise is added to
the weight matrix and this can be viewed as a good generalization to
the DNN. Besides, we should note that the gain by sequential LRF
was achieved before adaptation and further improvement might still
be obtained by adaptation of this compact model.

Moreover, we monitored the model performance prior and after
each step of factorization. We observed that in many cases the WER
absolute reduction after each step of factorization is less than 1% and
retraining easily regained most of it. For example, for German data
we observed that in the first step by factorizing only the final weight
layer, the WER on Dev. set increased from 11.04% to 11.95%; or
in the 6th step, the increase in WER was only 0.56%. This confirms
our hypothesis that sequential LRF leads to only small drop in model
performance at each step which can be easily retrieved.

Finally, we present the results of adaptation on top of the sequen-
tially factorized multilingual DNN. Table 4 shows that further im-
provements were obtained by adaptation and the results highlighted
in this table are the best recognition performance we achieved. Com-
paring this table with Table 2 reveals that sequential LRF provided a
better factorized model compared to the conventional LRF, and con-
sequently adaptation led to higher recognition performances. In the
last column, we also present the relative WER reduction obtained
by using sequential LRF and adaptation compared to the standard
adapted multilingual DNN.

5. CONCLUSIONS

The results of this paper show that we have successfully improved
the LRF of multilingual DNN. We proposed to employ LRF in a se-
quential manner to deal with two major issues associated with the
conventional LRF. In the experiments on five languages from the
GlobalPhone dataset, we demonstrated the effectiveness of the se-
quential LRF. From the combined sets of experiments we may draw
the following conclusions: (i) In all scenarios, using conventional
LRF together with adaptation improved the recognition results. (ii)
The proposed sequential LRF significantly reduces the required re-
training time and even with one epoch of retraining a proper compact
model can be obtained. (iii) Sequential LRF in combination with
adaptation can boost the results with 3.6-10.44% relative in compar-
ison with the normal multilingual DNN with adaptation.

5028

6. REFERENCES

[1] Arnab Ghoshal, Pawel Swietojanski, and Steve Renals, “Mul-
tilingual training of deep neural networks,” in ICASSP. IEEE,
2013, pp. 7319–7323.

[2] Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong,
“Cross-language knowledge transfer using multilingual deep
neural network with shared hidden layers,” in ICASSP. IEEE,
2013, pp. 7304–7308.

[3] Mark JF Gales, Kate M Knill, Anton Ragni, and Shakti P
Rath, “Speech recognition and keyword spotting for low re-
source languages: babel project research at CUED,” in Spo-
ken Language Technologies for Under-Resourced Languages,
2014, pp. 16–23.

[4] David Imseng, Petr Motlicek, Philip N Garner, and Hervé
Bourlard, “Impact of deep MLP architecture on differ-
ent acoustic modeling techniques for under-resourced speech
recognition,” in ASRU. IEEE, 2013, pp. 332–337.

[5] Frantisek Grezl, Martin Karafiát, and Milos Janda, “Study of
probabilistic and bottle-neck features in multilingual environ-
ment,” in ASRU. IEEE, 2011, pp. 359–364.

[6] Karel Veselỳ, Martin Karafiát, Frantisek Grézl, Milos Janda,
and Ekaterina Egorova, “The language-independent bottleneck
features,” in Workshop on Spoken Language Technology (SLT),
2012, pp. 336–341.

[7] Frantisek Grézl, Martin Karafiát, and Karel Vesely, “Adapta-
tion of multilingual stacked bottle-neck neural network struc-
ture for new language,” in ICASSP. IEEE, 2014, pp. 7654–
7658.

[8] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan
Catanzaro, and Ng Andrew, “Deep learning with COTS HPC
systems,” in ICML, 2013, pp. 1337–1345.

[9] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Q Wein-
berger, and Yixin Chen, “Compressing neural networks with
the hashing trick,” in ICML, 2015, pp. 2285–2294.

[10] Maxwell D Collins and Pushmeet Kohli, “Memory
bounded deep convolutional networks,” arXiv preprint
arXiv:1412.1442, 2014.

[11] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru
Arisoy, and Bhuvana Ramabhadran, “Low-rank matrix factor-
ization for deep neural network training with high-dimensional
output targets,” in ICASSP. IEEE, 2013, pp. 6655–6659.

[12] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of deep
neural network acoustic models with singular value decompo-
sition.,” in INTERSPEECH, 2013, pp. 2365–2369.

[13] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas,
et al., “Predicting parameters in deep learning,” in NIPS, 2013,
pp. 2148–2156.

[14] Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath, “Learning
compact recurrent neural networks,” in ICASSP. IEEE, 2016,
pp. 5960–5964.

[15] Reza Sahraeian and Dirk Van Compernolle, “A study of
rank-constrained multilingual dnns for low-resource asr,” in
ICASSP. IEEE, 2016, pp. 5420–5424.

[16] Reza Sahraeian and Dirk Van Compernolle, “Using weighted
model averaging in distributed multilingual dnns to improve
low resource ASR,” Procedia Computer Science, vol. 81, pp.
152–158, 2016.

[17] Aanchan Mohan and Richard Rose, “Multi-lingual speech
recognition with low-rank multi-task deep neural networks,”
in ICASSP. IEEE, 2015, pp. 4994–4998.

[18] Ming Yuan, Ali Ekici, Zhaosong Lu, and Renato Monteiro,
“Dimension reduction and coefficient estimation in multivari-
ate linear regression,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 69, no. 3, pp. 329–346,
2007.

[19] Hervé Bourlard, Nelson Morgan, Chuck Wooters, and Steve
Renals, “CDNN: A context dependent neural network for con-
tinuous speech recognition,” in ICASSP. IEEE, 1992, vol. 2,
pp. 349–352.

[20] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur, “Par-
allel training of deep neural networks with natural gradient and
parameter averaging,” arXiv preprint arXiv:1410.7455, 2014.

[21] Daniel Povey et al., “The KALDI speech recognition toolkit,”
in ASRU, 2011, pp. 1–4.

[22] Tanja Schultz, Ngoc Thang Vu, and Tim Schlippe, “Global-
phone: A multilingual text & speech database in 20 languages,”
in ICASSP. IEEE, 2013, pp. 8126–8130.

5029

